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Summary

Computer-aided engineering (CAE) has significantly expedited product development
in the automotive industry. In the process design and planning of deep drawing pro-
cesses, computer-aided design tools and finite element (FE) simulations are used
together in order to achieve a high-quality product within an acceptable time-span.
Here, finding the right shape for the forming tools is one of the most important tasks.
However, when the tools are manufactured and tested on the prototype press the
quality of the prototype parts rarely satisfies the requirements straightaway. There-
fore, manual reworking of the forming tools is required. Because reworking is highly
time-consuming and because a lot of experience is required by the tool technicians,
this is the most significant bottleneck in the process-planning today.

The two phenomena that cause problems in the product quality are the deformation
of the press and forming tools during forming, and the springback of the product
after release of the tools. Especially when high-strength steels are used, both phe-
nomena cause significant problems. To a large extent, they cannot be avoided and
therefore they have to be compensated in the shape of the forming tools. In this
thesis, various algorithmic methods are developed to carry out this compensation
in a numerical context. Ideally, the goal is to avoid tool reworking altogether, and
to achieve this goal, three problems need to be solved: Firstly, the accuracy of the
forming simulation must be improved in order to obtain a reliable representation
of the forming process. Secondly, an algorithmic framework needs to be developed
for the geometrical compensation of the forming tools. Thirdly, the proposed shape
changes must be transferred back to the CAD description of the tools.

The deformation of the press and tools can be divided into two categories. Firstly,
the global deformation of the bed-plate, slide and forming tools and secondly the
local deformation of the forming tool surface. In this thesis, these deformations are
demonstrated for the cross-die forming process. This is a blank-material testing
process and the results of the material test were reported to vary due to tool deflec-
tion. Indeed, both global and local deformations can be reproduced with a forming
simulation, using deformable tool models. For this, the general purpose FE code
ABAQUS is used. Unfortunately, the calculation time has increased tremendously.
This implies that carrying out such simulations is not feasible for full-scale industrial
processes. A more efficient way of modeling tool elasticity needs to be found.

Static condensation, a well-known technique for reducing the size of finite element
models, does not bring the anticipated decrease of numerical cost. The principle
of the method is to pre-solve a part of the system of equations so the deformation
is only calculated at locations in the tool geometry that are actively required dur-
ing the forming simulation. However, the reduced set of equations turns out to be
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much harder to solve. In contrast, the so-called Deformable Rigid Bodies (DRBs) do
provide a tremendous reduction in the calculation cost. Here, the deformation of a
body is approximated as a linear combination of pre-calculated deformation modes.
When the load is global, a small number of modes provides sufficient accuracy. This
makes it possible to include the entire press structure into the forming simulation.
A DRB module has been developed and it is implemented in the FE simulation
code DiekA. As a test, the tools of the cross-die forming process are modeled as
DRBs. The simulation results show the same phenomena as the regular ABAQUS
simulation, however the increase in numerical cost due to the elastic tool models
amounted 8% only.

Springback is the deformation of the blank that occurs when the forming tools are
opened. This shape deviation may cause problems in the assembly process for the
car-body. In order to produce parts with the correct shape, the forming tools must
be compensated. In tube-bending, compensation is achieved by overbending: the
tube is bent further than the desired angle to obtain the right shape after springback.
The mathematically generalized description of this idea is called the Displacement
Adjustment (DA) method. For a simple forming process, the stretch-bending of
a bar, it is shown why DA compensation is a nonlinear procedure. This analysis
reveals why a different compensation is required for different forming geometries,
material or process parameters. In industrial processes, the compensation is differ-
ent at the various locations in the product, therefore, optimal compensation cannot
be achieved in one step. The iterative application of DA does lead to the optimal
tool shape in only a few iterations.

In any case, the quality of the tool surfaces must be maintained during compensation.
As an addition to the discrete DA principle, the smooth displacement adjustment
(SDA) algorithm has been developed. The algorithm leaves the blankholder area of
the tools and the gap width between them unchanged. Undercuts that could occur
during compensation are automatically removed. Three industrial springback prob-
lems are been solved using this method in combination with a commercial forming
simulation program.

The previously mentioned SDA compensation principle has been developed for mesh
geometries. Mesh geometries suffice to show the effectiveness of the compensation,
however, the shape changes must finally be transferred to the tool CAD descrip-
tion. The quality and smoothness of the tool surfaces determines the appearance
of a sheet metal product and therefore they must comply to very strict tolerances.
When the tool surfaces are manually modified, problems occur. Either the surface
quality is lost, or the details of the compensation cannot be transferred fully.

Therefore, a CAD geometry compensation algorithm has been developed. A grid of
sampling points is projected onto the geometry. These sampling points are compen-
sated using the SDA algorithm, and then the surfaces are simultaneously re-fitted to
the points. During this calculation, smoothness boundary conditions can be applied
to the surface transitions in order to preserve the surface quality. This is also possi-
ble for complex trimmed surfaces. The algorithm has proven to work well in several
academic examples. In fact, small defects in the initial geometry were automatically
removed during compensation.
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Samenvatting

In de autoindustrie heeft computer-aided-engineering (CAE) het productontwikke-
lingsproces significant verkort. Bij het procesontwerp en de planning van diep-
trekprocessen worden zowel computer-ondersteunde ontwerpwerktuigen als eindige
elementen (EE) simulaties gebruikt om in een acceptabele tijdsperiode een prod-
uct van hoge kwaliteit te ontwikkelen. Hierbij is het vinden van de optimale vorm
van de omvormgereedschappen één van de belangrijkste opgaven. Ondanks het ge-
bruik van geavanceerde programma’s voldoet het product zelden aan de gestelde
kwaliteitseisen als het voor de eerste keer wordt geproduceerd op de prototype-pers.
Daarom is handmatige nabewerking van de werktuigen noodzakelijk. Omdat deze
nabewerkingen veel tijd in beslag nemen en veel ervaring vereisen, is dit een van de
grootste bottlenecks in de procesplanning.

Twee fenomenen zorgen voor kwaliteitsproblemen in het omgevormde product: De
deformatie van de pers en de werktuigen gedurende het dieptrekken, en de terugver-
ing van de platine na het openen van de matrijs. Deze problemen zijn groot, met
name wanneer hoge-sterkte stalen worden gebruikt. Voorkoming is in het algemeen
niet mogelijk en daarom moet de vorm van de omvormwerktuigen gecompenseerd
worden. In dit proefschrift worden algorithmische methoden ontwikkeld om deze
compensatie al in een numerieke context uit te voeren. Het ultieme doel is, nabe-
werkingen compleet te vermijden. Hiervoor moeten drie problemen worden opgelost:
Ten eerste moet de nauwkeurigheid van de omvormsimulatie worden verbeterd opdat
het dieptrekproces realiteitsgetrouw wordt afgebeeld. Ten tweede moet een algorith-
misch raamwerk worden ontwikkeld voor de compensatie van de omvormwerktuigen.
Tenslotte moeten de berekende vormveranderingen weer in de CAD-beschrijving van
de werktuigen worden teruggevoerd.

De deformatie van de pers en omvormwerktuigen kan in twee categoriën worden
ingedeeld. Ten eerste de globale deformatie van de perstafel, stoter en omvorm-
werktuigen, en ten tweede de locale deformatie aan het oppervlak van de werk-
tuigen. Deze beide soorten deformaties worden in dit proefschrift getoond voor het
cross-die omvormproces. Dit proces wordt als materiaaltest gebruikt. In publi-
caties wordt gemeld dat de resultaten afhankelijk zijn van de werktuigdeformatie.
Deze afhankelijkheid kan met een eindige elementen-simulatie gereproduceerd wor-
den wanneer deformeerbare werktuigmodellen worden toegepast. Dit is mogelijk
met universele EE software, zoals ABAQUS. Helaas veroorzaken de deformeerbare
werktuigmodellen een enorme stijging in de rekentijd. Dit betekent dat het uitvoeren
van dergelijke simulaties voor omvormprocessen van industriële schaal onmogelijk is.
Een efficiëntere methode voor de modellering van werktuigdeformaties moet worden
ontwikkeld.
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Statische condensatie, een bekende methode om de grootte van EE modellen te re-
duceren, leidt niet tot reductie van de numerieke kosten. Het principe van de meth-
ode is de eliminatie van een gedeelte van het systeem van vergelijkingen, zodanig
dat de deformatie van de werktuiggeometrie alleen berekend wordt in die locaties die
actief gebruikt worden in de omvormsimulatie. Het oplossen van het gereduceerde
vergelijkingssystem blijkt echter zeer inefficiënt. De zogenaamde Deformable Rigid
Bodies (DRB) zijn wel in staat de numerieke kosten significant te reduceren. De
vervorming van een lichaam wordt hier berekend als een lineaire combinatie van
voorberekende deformatie-moden. Wanneer de belasting relatief uniform is, levert
een klein aantal moden al voldoende nauwkeurigheid. Dit maakt het mogelijk om
de gehele pers-setup in de simulatie mee te nemen. Een DRB-module is ontwikkeld
en geimplementeerd in de omvormsimulatiecode DiekA. In een testberekening zijn
de werktuigen van het cross-die proces als DRB gemodelleerd. De simulatieresul-
taten tonen dezelfde fenomenen als de reguliere ABAQUS simulatie. De toename in
rekentijd, als gevolg van de elastische werktuigmodellen, bedraagt slechts 8%.

Terugvering is de deformatie van de platine die optreedt wanneer de omvormwerk-
tuigen teruggetrokken worden. De vormafwijking kan problemen veroorzaken in het
assemblageproces van de autocarosserie. Om onderdelen te produceren met een cor-
recte geometrie moeten de werktuigen gecompenseerd worden. Bij het buigen van
buizen wordt compensatie bereikt door overbuigen: de buis wordt tot een kleinere
hoek gebogen dan gewenst, opdat deze na terugvering de juiste vorm verkrijgt. De
wiskundig gegeneraliseerde beschrijving van dit idee is de Displacement Adjustment
(DA) methode. Gebruikmakend van een simpel omvormproces, het strekbuigen van
een staaf, wordt aangetoond dat compensatie een niet-lineaire procedure is. Deze
analyse laat zien waarom de compensatie verschillend is bij verschillende productge-
ometrieën, materialen en procesparameters. In industriële omvormprocessen varieert
de compensatie over de productgeometrie, en daarom kan de optimale werktuigvorm
niet in één stap worden gevonden. Het iteratieve gebruik van de DA-methode leidt
tot een goede werktuigvorm in een gering aantal iteraties.

Het is belangrijk, de kwaliteit van de werktuigoppervlakken te waarborgen gedurende
de compensatie. Als toevoeging bij het DA algorithme is de Smooth Displacement
Adjustment (SDA) methode ontwikkeld. Dit algorithme laat het blankholdergebied
en de spleetbreedte tussen de werktuigen onveranderd. Daarnaast worden onder-
snijdingen, die eventueel bij compensatie optreden, automatisch verwijderd. Drie
industriële terugveer-problemen zijn opgelost met deze methode, in combinatie met
een commercieel omvormsimulatieprogramma.

Het SDA compensatieprincipe is ontwikkeld voor mesh-geometriën. Met deze meshes
kan in een simulatie de het resultaat van een compensatie gecontroleerd worden.
Uiteindelijk moeten de geometrieveranderingen echter worden doorgevoerd naar de
CAD beschrijving van de werktuigen. De kwaliteit en gladheid van de werktuigop-
pervlakken bepalen de uiterlijke verschijning van het gelakte carrosseriepaneel en
moeten daarom aan zeer strenge toleranties voldoen. Wanneer de geometrie hand-
matig aangepast wordt, treden problemen op: De kwaliteit van de oppervlakken
neemt af, of details van de compensatie kunnen niet volledig overgebracht worden.

Daarom is een CAD-compensatiealgorithme ontwikkeld. Een net van punten wordt
daarbij op de geometrie geprojecteerd. De projectiepunten worden gecompenseerd
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met het SDA principe, waarna de CAD-oppervlakken simultaan aan de gemodi-
ficeerde punten aangelegd worden. Gedurende deze berekening kunnen gladheids-
randvoorwaarden opgelegd worden tussen de oppervlakken, opdat de kwaliteit van
de geometrie behouden blijft. Dit is ook mogelijk voor complexe getrimde opper-
vlakken. Het compensatiealgorithme functioneert uitstekend bij diverse tests met
academische voorbeeldgeometrieën. Zelfs initiële gebreken in de geometrie worden
verwijderd gedurende de compensatie.
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Notation convention

Within one chapter variable characters have one meaning. If certain variables are
used in more than one chapter, or when variables have similar meanings in differ-
ent chapters, the author has strived to use consistent naming as much as possible.
However, a glossary is provided at the end of each chapter for convenience .

For the variable-characters, the following conventions have been adopted:

Scalar: Upper and lowercase italic and Greek fonts
Examples: α, a,B

Vector: lowercase bold font or bold Greek font
Examples: d,θ

Matrix or tensor: Uppercase bold font, stress σ and strain ε

Examples: D,Θ,σ
Note: since only well known tensors are used in this thesis and since tensors do not
play an important role, they are not marked individually.

Cartesian coordinate, location vector: lowercase italic font with arrow
Example:

~c =





cx
cy
cz





Note that equations using this type of variable can be seen as three independent
scalar equations for each component x, y and z

Vector of coordinates: lowercase bold font or bold Greek font with arrow
Example: ~f
Note that, in principle, this type of variable is a matrix, however, equations using it
should be regarded as three independent equations for each component x, y and z

Matrix of coordinates: uppercase bold font or bold Greek font with arrow
Example: ~H
Again, equations using this type of variable should be regarded as three independent
equations for each component x, y and z

The mathematics in this thesis have been produced from an engineer’s point of
view. As an introduction into mathematical science the author highly recommends
the paper by Renteln and Dundes [57].

8



Contents

Summary 1

Preface 7

1 From product design to production process 11
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 The deep drawing process . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 The traditional process design . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Opportunities for the digital factory concept . . . . . . . . . . . . . . 15

1.4.1 Finite Element forming simulations for tool optimization . . . 16
1.4.2 The influence of press and tool deformations . . . . . . . . . 17
1.4.3 Virtual compensation of forming tools . . . . . . . . . . . . . 17
1.4.4 Tool CAD geometry modification . . . . . . . . . . . . . . . . 17

1.5 Research hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Efficient modeling of tool and press deformation 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Categorizing tool and press deformation . . . . . . . . . . . . 19
2.1.2 Application potential for simulations with deformable tools . 21

2.2 Tool deformation in the cross-die benchmark . . . . . . . . . . . . . 22
2.2.1 FE simulation of the process . . . . . . . . . . . . . . . . . . 22

2.3 Static condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Deformable Rigid Bodies . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 The principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Calculating modes . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.3 Approximation error analysis . . . . . . . . . . . . . . . . . . 32
2.4.4 Interactions between DRBs . . . . . . . . . . . . . . . . . . . 33
2.4.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.6 Reducing the mesh-dependent error . . . . . . . . . . . . . . 39

2.5 Including DRBs in the forming simulation . . . . . . . . . . . . . . . 42
2.6 Simulating the cross-die benchmark using DRBs . . . . . . . . . . . 44
2.7 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Computer-aided Springback Compensation 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Handling springback in industry . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Springback measurement and assessment . . . . . . . . . . . 50
3.2.2 From manual to numerical springback compensation . . . . . 52

3.3 Compensation algorithm principles . . . . . . . . . . . . . . . . . . . 53
3.3.1 Displacement Adjustment . . . . . . . . . . . . . . . . . . . . 53

9



3.3.2 Spring Forward . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.3 Analytical verification of iterative and one-step DA . . . . . . 58

3.4 Springback compensation for industrial processes . . . . . . . . . . . 67
3.4.1 Retaining tool surface quality . . . . . . . . . . . . . . . . . . 68
3.4.2 Retaining the blankholder surface . . . . . . . . . . . . . . . 71
3.4.3 Gap-width preservation and undercut avoidance . . . . . . . 74
3.4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.5.1 Process 1: Free forming . . . . . . . . . . . . . . . . . . . . . 75
3.5.2 Process 2: Inner panel drawing . . . . . . . . . . . . . . . . . 78
3.5.3 Process 3: Outer panel drawing . . . . . . . . . . . . . . . . . 84

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Modification of tool CAD geometries 89
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 Surface qualification and quality . . . . . . . . . . . . . . . . . . . . 90

4.2.1 Class A surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.2 Class B surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Global surface modification algorithms . . . . . . . . . . . . . . . . . 92
4.3.1 Surface compensation principle . . . . . . . . . . . . . . . . . 93
4.3.2 Transitions between surfaces . . . . . . . . . . . . . . . . . . 97
4.3.3 Multiple surfaces with simple boundary conditions . . . . . . 98
4.3.4 Trimmed surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3.5 General continuity boundary conditions . . . . . . . . . . . . 102
4.3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . 110

Conclusion and recommendations 113

Acknowledgements / About the author 117

Bibliography 119

10



Chapter 1

From product design to

production process

1.1 Introduction

In recent years, the economic pressure on the car industry has increased, and at the
same time, consumer demand has become more diverse. The car manufacturers are
faced by the challenge to develop cheaper and more environmentally friendly cars,
and to fill smaller market niches with exciting designs. Therefore the time-to-market
for new vehicles needs to be reduced for the company to remain competitive in the
automotive marketplace [38]. This issue is of particular importance in the produc-
tion of sheet metal parts.

Since the 1980s, the time required for the design and development process has
roughly halved [61]. This has become possible thanks to two major innovations:

• Modular concepts, parallel/concurrent engineering

• Computer-aided engineering

The construction of modern cars is divided into different functional units. Sub-
frames, engines and wheel suspension assemblies in particular are designed as sepa-
rate modules that can be used for different types of cars. This is commonly called
platform strategy and saves on development time and production cost. The savings
are substantial when a company builds many different models under various brand
names. Another advantage is that well-defined modules can be developed concur-
rently, so different development teams can work on one project at the same time.

Since the 1960s, Computer-aided engineering (CAE) has started to play a more
and more prominent role in the development process. Figure 1.1 provides a brief
overview of the advances of computer-based development tools. Computer-aided
design (CAD) enables the engineers to create more complex shapes (1) and it pro-
vides a platform for project management because different parts can be archived,
reviewed and updated easily. Ideally, the data of all car parts are coupled as a digital
assembly, so geometry changes can be carried out without causing errors, even in the
complex concurrent engineering context. CAD was initially used as a drawing tool
only, but already in the 1960s, the digital data were applied in production processes
(2) such as numerically controlled (NC) machining. This is called Computer-aided
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Figure 1.1: Four stages in virtual product development

manufacturing or CAM. However, this integration goes much further today.

Finite Elements (FE) software allows the engineer to analyze the stiffness, strength
and dynamic properties of a part in great detail, before a prototype part is pro-
duced (3). Today it has also become possible to model production processes such
as polymer injection moulding processes, the forging of gears or, the main subject
of this thesis, the forming of sheet metal parts. The conclusions from such analyses
are transferred back to the CAD system in order to optimize the designs.

The final goal is to fully integrate FE and CAD systems, which makes it possible to
design, test and automatically optimize the part entirely in the virtual factory [67]
(4). Ideally, this results in a ‘first-time-right’ product and production process. The
deep drawing of sheet metal products is a very complex process that presents major
challenges, but also many opportunities for this virtual factory concept.

1.2 The deep drawing process

Car body structures are made almost exclusively of sheet metal parts. The predom-
inant manufacturing method for these products is the deep drawing process, shown
schematically for a double-action press in Figure 1.2. A sheet of metal, the blank,
is clamped between the blankholder and die. The die, blankholder and blank move
downwards, onto the punch, which forms the product [21].

The process is physically complex and highly sensitive to process parameter changes.
The blank is subject to extremely high pressures and large friction forces. When
the blank slides into the die cavity and is formed into the product, it is bent as
well as stretched. The way the sheet metal is plastically deformed influences many
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Figure 1.2: The deep drawing process

of the product’s quality measures, such as the thickness of the blank, rupture and
wrinkling. Obviously, the geometry of the product needs to meet the requirements
too. In this respect springback, the change of the blank shape after retraction of the
tools, has become one of the most important challenges for process-design engineers.

1.3 The traditional process design

The process design for a deep drawn product, shown in Figure 1.4, is a complex task.
Process engineers need to find a satisfactory compromise between product quality
and process stability. Over time the geometrical tolerances have become smaller, for
example to allow the part to be laser-welded. At the same time the materials have
become more complex: To save weight, high-strength steels and aluminium are used
more frequently. For some parts even tailor-made blanks, consisting of different ma-
terial grades, are used. As an example, Figure 1.3 shows the variety of steel grades
that are used in a modern car body.

The most important requirements for the product and process are:

• Sufficient thickness throughout the product

• Avoidance of rupture in the product

• No visible wrinkles in the product

• The shape of the product should be within geometrical tolerances

• The press force should be within the press limits

The blank material and initial thickness are generally defined by the product-
designer, so the process engineer needs to achieve a satisfactory process by the
following means:

1. Forming stages and sequence
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Figure 1.3: Steel grades in a modern car (Picture courtesy of Volkswagen AG)

2. Geometry of the die addendum

3. Blankholder force

4. Drawbeads

5. Geometry of the product-area of the tools

6. Lubrication

Generally, the goal is to invoke as much plastic strain in the product as possible
whilst avoiding rupture. The larger the in-plane tensile stresses become relative
to the bending stresses, the more stable the shape of the product will be [41]. In
Chapter 3, this will be discussed in more detail. The drawing of the product can be
carried out in several stages. This way, the flow of the blank into the die-cavity can
be controlled more accurately, allowing larger deformations without tearing. The
different forming and cutting stages and the optimal sequence are determined in the
first phase of Figure 1.4, tool surface and process design.

Changing the blankholder force is probably the most intuitive way to influence the
blank draw-in. A low force allows the blank to flow into the die cavity easily, likely
resulting in wrinkles and an increase in the amount of springback. A high force might
result in rupture. The addition of drawbeads and the design of the die-addendum
are also powerful methods to influence the blank flow. Nowadays, the tool surface
and process design are carried out in the digital domain, using fast FE simulations
[62] to check the behavior and feasibility of the process.

When the process and the shape of the tool surfaces have been defined with suffi-
cient confidence, the process is feasible and radical changes to the process are not
expected anymore, the three-dimensional design of the tool-structure is produced.
The tools are heavy molded structures which are generally designed using strict
company guidelines [2] to avoid problems with the molding process. The structural
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Figure 1.4: The process planning

stiffness of the tools is important too [38], but is generally not yet optimized numer-
ically [51].

At the same time, more detailed simulations are carried out for the process [62].
The accuracy of the results is considerably higher than the previous simulations
and therefore the calculation times are much longer. Sometimes the simulation also
includes a prediction of the springback of the product. The goal is to apply more
detailed optimizations to the tool and process design.

When the real world border is crossed, the tools are actually manufactured and an
extensive try-out phase is started in the press workshop. Touching-in means that the
tool surfaces are carefully ground by hand. This is done because the surfaces need
to be very smooth, but more importantly, to allow the process engineer to control
the blank flow exactly. In some cases lubrication is also applied to the blank, but
this is impractical in most production processes.

To solve remaining problems with the process or product, global changes are applied
to the tool surfaces to compensate for springback or for the deflection of the tools
under the press load. This is very time consuming, as it requires a redesign by CAD
engineers, and the corrections then need to be applied to the forming tools. This
involves additional machining or even welding operations. When the process runs
smoothly on the prototype press, the tools are transferred to the production press.
Due to differences in press-behavior, slight changes to the process settings and tools
are carried out even at this phase. For example, the deflection of the press-frame
and different kinematics of the slide influence the deformation of the blank already.

1.4 Opportunities for the digital factory concept

Kim et al. [38] state that the use of CAE tools have reduced the process design
phase from 16.5 to 8.5 months already. However, many of the die-trial tasks could
also be carried out before the real world border, reducing the planning effort even
further. Figure 1.5 shows the ideal process planning. The main target of this thesis
is to avoid the time consuming tool reworking and to carry out necessary tool com-
pensation in the digital domain already.
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Figure 1.5: The digital factory process planning

1.4.1 Finite Element forming simulations for tool optimization

Before the scope of this thesis is discussed in more detail, the idea behind Finite Ele-
ment (FE) forming simulations needs to be explained briefly, because this method is
the foundation of almost all analyses and procedures presented. The deformation of
bodies, such as the blank and the deep drawing tools are governed by the equations
of the continuum mechanics theory. The FE method is a way to approximately solve
these equations for a body with an arbitrary shape in relation with its boundary
conditions and loads. From an ‘engineering’ point of view, the basic idea of the FE
method is to divide the geometry of the body into a set of small elements, which
are interconnected via nodes. Because the deformation of each individual element
in relationship with the load on its nodes can be described in a manageable set of
equations, it is possible to calculate the deformation of the entire structure by cou-
pling all element equations in a large matrix equation. For an in-depth treatment
of the FE method [33] and [9] are highly recommended.

The simulation of deep drawing using the FE method presents a major challenge,
it is a large area of active research. Paper [77] provides a historical overview. An
in-depth introduction can be found in [72]. The three major topics in forming
simulations are:

• Modeling elasto-plastic material behavior [32, 8, 69].

• Modeling contact and friction between the blank and the forming tools [76,
79, 39].

• Time integration schemes, element technology and other numerical topics [72,
54, 73, 13].

An interesting point was made by Meinders [49]: In the case of a benchmark study,
different results were obtained by different users even when the FE software was
identical. This shows that carrying out forming simulations is no trivial task. It is
helpful to consider the recommendations in guideline documents such as [14].

Even though remarkable improvements are still being achieved in the three model-
ing challenges, the focus of recent conferences such as ESAFORM, IDDRG, NUMI-
FORM and NUMISHEET has broadened to include the application of FE simula-
tions. Instead of just using the results of a simulation for (feasibility) checks, they
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can be used actively in optimization techniques. In the thesis of Bonte [12] it is
shown how, for example, the blankholder force can be optimized numerically. The
virtual reworking of tool surfaces based on simulation results is a different challenge.
In numerical optimization, the number of parameters is limited and much too small
to directly treat a CAD surface description, or FE mesh. So, in order to obtain the
optimal tool surface shape, specific compensation algorithms are required. In this
thesis, methods for the compensation of tool deflection and springback have been
developed.

1.4.2 The influence of press and tool deformations

Obviously, a reliable prediction of these two phenomena is of vital importance for
the results. At the moment, tool and press deformations are not taken into consid-
eration during the FE simulation at all. The reason for this is the numerical cost
of the simulation. When the tools, or even the press, are modeled as FE meshes,
the size of the matrix equations increases tremendously and instead of a couple of
hours, several days might be required for the calculation. There are techniques to
reduce this numerical cost. These will be the main focus of Chapter 2. The so
called deformable-rigid bodies have been combined with static reduction to provide
a highly efficient means of modeling tool deformation. A software module has been
developed and included in the FE code DiekA.

1.4.3 Virtual compensation of forming tools

Springback, the deformation of the blank after release of the tools, is another chal-
lenge for both process-engineers and computer simulations and will be discussed in
Chapter 3. However, for springback the emphasis will be on the geometric compen-
sation and not so much on the physical phenomenon, as recent research has improved
the accuracy of the prediction tremendously.

The most effective compensation algorithm is called ‘Displacement Adjustment’ or
DA [24] and is based on the springback displacement. Even though the principle of
DA is conceptually simple, the interaction with the forming process turns out to be
complex, as Section 3.3.3 reveals. There, the method is demonstrated for a simple
forming process that can be modeled analytically.

Many other challenges in springback compensation are encountered when industrial
parts are compensated. An industrially applicable springback compensation strategy
called SDA is developed. This will be the subject of the final section of the chapter.
The compensation methods can also be applied to solve geometrical deviations in
the product that are due to tool/press deformation. The approach is completely
identical to the springback compensation strategy, so it is not treated in detail.

1.4.4 Tool CAD geometry modification

As stated in the introduction, the integration of FE and CAD systems is one of the
main assets of computer-aided product development. However, because of the differ-
ences between the CAD and FE descriptions for geometry, this integration is mostly
a one-way solution: it turns out to be very hard to return the geometry changes
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from an FE-based compensation or optimization to a CAD system. The parametric
surface functions used in CAD systems are very flexible during the design-phase.
This flexibility makes them also unpredictable when the surface parameters need to
be modified, and this problem is aggravated when surfaces are interconnected with
smoothness boundary conditions. Chapter 4 provides some views on the mathemat-
ics behind the modification of CAD geometries.

1.5 Research hypotheses

The above topics can be summarized in three research hypotheses

Hypothesis 1a
The deflection of the press and forming tools influences the quality of the deep-drawn
product.

Hypothesis 1b
Press and tool elasticity can be included in the forming simulation at an acceptable
cost.

Hypothesis 2
Using FE simulation results, the surface of the forming tools can be compensated
automatically for springback and tool deflection to produce a geometrically accurate
product.

Hypothesis 3
Mesh-based shape modifications can be automatically transferred back to the tool
CAD geometry.
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Chapter 2

Efficient modeling of tool and

press deformation

2.1 Introduction

Deep drawing is an incredibly sensitive process. Even small phenomena that are
hard to measure may influence the blank flow and therefore the quality of the final
product. The deformation of the press and tools during forming is such a phe-
nomenon. The deformations are small, but they are unavoidable and need to be
taken into account during the process planning, preferably in the FE simulation
phase. Currently the solving of problems related to tool and press deformations
depends on experience and experiments only, and it requires a lot of time.

The following subsection will show where unwanted deformations occur in the press
during forming, and how the related process problems may be reduced or solved. In
Section 2.2 these problems are demonstrated in the simulation of a relatively simple
forming process: the cross-die benchmark. It has been found that the numerical
cost of including tool and press deformation is so high that industrial application is
unfeasible, even when increasing computer processing power is taken into consider-
ation. Therefore, the following sections are dedicated to techniques to decrease the
numerical cost required for including tool and press deformations in an FE simula-
tion. Section 2.3 shows the advantages and disadvantages of static condensation, a
well-known technique to reduce the size of the system of FE equations. Then, in
Section 2.4 the principles behind Deformable Rigid Bodies (DRBs) are explained.
Section 2.5 shows how the final solution, a combination of static reduction and modal
decomposition, was implemented in a forming simulation code. Finally, the method
is tested in Section 2.6, using the cross-die as an example.

2.1.1 Categorizing tool and press deformation

Deformations of the press and tools occur at various locations. Four different cate-
gories are identified schematically in Figure 2.1.

Press-frame deformation (1) is the deflection of the press frame. The press frame
is an extremely heavy structure and its deformation is therefore not significant for
the results of the forming process. Press deformation (2) includes the deforma-
tion of the bed-plate and slide. In contrast to the press frame, these components
can deform substantially, the deformations are in the order of magnitude of several
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Figure 2.1: Different types of tool and press deformations [46]

millimeters [31], especially in large presses with a large tonnage that are used for
parts made of high-strength steels. The slide not only deflects, but it can also tilt
slightly, which has an influence on the drawing process as well. Production presses
are tested and measured regularly to avoid unexpected production problems [27].
Wiemer [78] gives an extensive overview of press deformations and shows a detailed
spring damper model that could also be used in a simulation context.

The heavy loads on punch, blankholder and die results in deformation of these tools
(3), even though these are stiff structures. As an additional complexity, it is impos-
sible to separate the tool deformation from the press deformation, as the bed-plate
and slide support the tools. Hayashi [31] has measured the deflection of a set of
deep-drawing tools on three different presses and obtained very different results for
each press. The interaction between press and tools is also reflected in the fact that
the touching-in of the tool, which was carried out on the prototype press, needs
to be repeated on the production press. Because the press and tool deflection are
linked so strongly, it is hard to optimize the tool structure separately (as proposed
in [51]). Instead, in industry tool deflection is generally minimized by using heavy
ribbed structures that are designed following company guidelines [2].

All previously mentioned press and tool deformations are regarded as macro-deformations,
which means that they are global deformations with a large ‘wavelength’. Tool-
surface deformation (4) is a local deformation, caused by high contact pressure be-
tween blank and tool, for example at the die-shoulder and in the blankholder area.
The order of magnitude of these deformations is considerably lower (max. 0.1mm).
Since friction depends strongly on small changes in the pressure field between the
blank and the tools, small changes in the tool geometry have a large influence on
the simulation results, blank draw-in and springback.
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Tool surface deformation is the focus of almost all present publications on elastic
deformations in tools, for example [18], [60] and [37]. All authors report considerable
influence, however, in most publications the tools were meshed coarsely, and numer-
ical issues were discovered in modeling the two-sided contact between the tools and
the blank [60]. This made it impossible to state whether taking tool deformations
into account brought a provable advantage.

2.1.2 Application potential for simulations with deformable tools

For the remainder of the thesis, the deformation categories are summarized in global
(press frame, press and tool deformation) and local (tool surface) deformations. The
goal of this chapter is to investigate the influence of both categories and to include
them in the FE forming simulation at acceptable cost. The tool deformation pre-
diction can be used in various ways.

Firstly, when unacceptable global deformations are encountered during the FE sim-
ulations, the results can be used to compensate the shape of the tool surfaces.

A second area of application involves the local deformations: the touching in of tools.
The touching in of the forming tools currently requires about 350 to 500 hours on
the prototype press and then another 100 to 200 hours on the mass-production press
[31]. When tool and press deformations are taken into account during FE analysis,
the blank draw-in prediction will become better, avoiding unexpected changes to
the tools during the tool tryout phase.

The elastic properties of the tools can also be exploited in a positive way. Some
advanced blankholder designs were deliberately constructed to be flexible [19, 29, 30,
11], so varying blankholder loads can be applied at different locations. Normally, the
press cushion exerts a uniform pressure onto the blankholder. Varying the pressure
on the blankholder brings a new way of control for the forming process. This method
has the following advantages:

• Time is saved in the tool testing phase, the amount of tool reworking is
reduced[29]

• Increased control over blank-flow makes the production of more complex parts
possible, sometimes a forming stage can be omitted

• Increased control over the forming process during production allows for cor-
recting the process when a new batch of sheet material has (slightly) different
material properties

Despite these advantages and the fact that most modern presses are equipped with
multiple pressure groups, flexible blankholders are not applied much because of the
added complexity is not backed up by process planning experience. As a third appli-
cation, elastic tool modeling in FE simulations might provide the flexible tools with
a better acceptance. When the effect of variable blankholder loading can be tested
in the FE testing phases, it is much easier to gain understanding and experience
with these advanced tools. This is desirable since the process control parameters
for deep drawing are generally fixed and limited, whereas flexible tools provide an
instantaneous means to influence the process.

21



Figure 2.2: The cross-die process

2.2 Tool deformation in the cross-die benchmark

Before the previously mentioned applications are taken into consideration, the first
goal is to actually show the effects of tool and press deformations in a manageable
forming process. The cross-die benchmark is a forming process that clearly shows
these effects. It will serve as the vehicle for most of the analyses in this chapter.

The cross-die process is shown in Figure 2.2. It is used industrially as a material test
[6] and provides insight in the formability of a steel grade: The idea is to increase
the size of the blank in a series of forming tests until fracture occurs. The maximum
allowed blank size is defined as the cross-die benchmark value.

In this thesis, the blank has the size of 295 by 295mm and is made from St14 steel
with a thickness of 0.7mm. The blankholder load totals 300kN. During the experi-
ments, the process revealed a high sensitivity to tool deformation. In the prototype
press, the tools are supported by a set of pins that allow more tool deflection than
a regular bed-plate. Depending on configurations of these pins different bench-
mark results were found [6]. In order to reduce this sensitivity, small squares called
spacers were placed around the blank [6]. These spacers are made from the same
sheet-material as the blank. The experimenters intended to make the gap between
blankholder and die more even, because due to tool deformations, the gap-width
had become nonuniform. Unfortunately, the spacers made the problem worse.

2.2.1 FE simulation of the process

A FE analysis is a good way to analyze the process and show the influence of tool
deformation and the use of spacers. In [6] tool deformation was calculated in a
separate structural FE simulation and then transferred to the DiekA forming sim-
ulation by using a variable blankholder force function. The reason for this was,
that modeling deformable tools was not possible in this FE forming code. However,
it is possible to carry out such a simulation with a general purpose FE code, at
a substantial additional cost. ABAQUS has been used in this project to compare
a regular simulation with rigid tool models to a simulation using deformable tool
models. Table 2.1 shows the settings of both simulations. Note that for simplicity,
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Figure 2.3: Contact pressure, rigid (left) and deformable (right) tools

regular tetrahedral elements were used for the tool models. These elements are too
stiff and it is recommend to use ABAQUS C3D10M elements in future applications.

Rigid tools Deformable tools

Calculation type Static implicit
Blank elements 4-node red. integration shell

S4R
8-node solid-shell
SC8R

Tool elements 4-node rigid-body elements Tetrahedral solid elements
R3D4 C3D4

Contact Penalty
Default stiffness
Node-to-surface
Contact stabilization

Number of elements 33124 187298

Table 2.1: Settings for the ABAQUS forming simulations

The forming process consists of two phases; blankholder loading and forming. The
contact pressure from the tools onto the blank defines the amount of friction and
therefore the amount of draw-in. The contact pressure distributions for deformable
and rigid calculations are compared after the blankholder closing phase in Figure
2.3. Note that there is no pressure in the middle area of the blank, as forming has
not yet started. In this process the blankholder area, the part of the blank where
it is clamped between die and blankholder, is completely flat. For this reason, a
homogeneous pressure distribution was expected.

This is the case for the calculation with rigid tools. However, when the tools are
allowed to deform, even the slightest deflection of the tools results in a localization
of the pressure field to the edge of the blank. The reason for this is made clear
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Figure 2.4: Bending of the die and blankholder (schematically)

Figure 2.5: Deformed die (x5000)

schematically in Figure 2.4.

The deformation of the die after the completed forming stage is visualized in Figure
2.5. The deformation was multiplied by 5000 for visualization purposes. The figure
shows that the deformation is a combination of global tool deformation and local
tool-surface deformation. Note that the spacers also cause deformation in the tools,
they carry a part of the blankholder load.

Due to the in-plane compression of the blank in the blankholder area, it thickens
considerably during draw-in. The contact pressure maximizes at the thickest spots,
lifting up the blankholder slightly thereby relieving the spacers. These thickening
spots can be observed on an experimental blank as shiny spots in the photograph
2.6. In these areas the blank was ‘polished’ due to the high friction.

The ABAQUS calculation shows the same pressure spots (see Figure 2.7). In the
left picture, rigid tools were used. Because the blankholder is rigid, it is lifted up en-
tirely, almost completely relieving the spacers. However, when the tools are allowed
to deform, they do overtake a considerable amount of the blankholder force from
the blank. In the right picture, this can be seen clearly: There is a high pressure
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Figure 2.6: Shiny spots on the blank reveal high-pressure zones (picture courtesy of
Corus RD&T)

Figure 2.7: Pressure distribution for rigid (left) and deformable tools (right)
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Figure 2.8: Draw-in of the blank for rigid tools (solid line) and deformable tools
(dashed line)

on the spacers, and the size of the high pressure spots is reduced. Because of the
reduction in blankholder pressure on the blank, the draw-in is larger.

Figure 2.8 shows the draw-in for both deformable and rigid simulations, and the dif-
ference is considerable. Due to the larger draw-in, the calculation with deformable
tools shows a higher tendency for blank-wrinkling, whereas the calculation with
rigid tools predicts a higher risk for rupture. This is visualized by the forming-limit
curves (FLC) in Figure 2.9. The left FLC is recorded at 70% of the punch stroke,
the right FLC at the end of the punch stroke. In the case of rigid tools, the strains
become extremely large at full punch stroke, which would mean complete failure.
The results of the calculation with deformable tools also exceed the safety limit, but
the result is not as bad.

It would be interesting to compare the different supporting-pin configurations and to
compare the simulation results with the experiments. However, this requires much
more detailed measurements and a more accurate FE modeling (especially for the
contact conditions) and is beyond the scope of this thesis.

The example does, however, strongly confirm hypothesis 1a The deflection of the
press and forming tools influences the quality of the deep-drawn product. Based on
the results that were achieved by using deformable tool models this simple example
process, an increase in simulation accuracy is expected for industrial products as
well.

However, especially in the case of complex and large car body parts, the size of the
required tool meshes increases the cost of the simulation immensely. Due to the
complex tool designs, tool meshes with several millions of DOFs are no exception.
Because the cost of an FE simulation increases more than linearly in relationship
with the amount of DOFs, this would result in simulations that are several orders
of magnitude too large to carry out in an industrial context, even considering the
rapid increase in computer performance.
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Figure 2.9: FLC at 70% (left) and full punch-stroke (right). Deformable tools in
grey, rigid tools in black

Therefore, more efficient ways of modeling tool elasticity have to be found. Due
to the small deformations, tool and press deformation can be considered as a linear
elastic problem. Two interesting strategies to increase the efficiency of such problems
are static reduction [33] and the so-called Deformable Rigid Bodies [10, 46]. In the
following section, these methods are explained and their usability is verified.

2.3 Static condensation

Static condensation is a technique for reducing the size of a linear FE calculation.
The FE model is reduced to generate only the output for a specific set of (retained)
degrees of freedom (DOF). There is no loss of accuracy. This technique was demon-
strated for tool elasticity modeling in [59].

The principle
The idea of static condensation is to speed up the calculation by pre-solving a part
of the equation, and by doing so removing unnecessary DOFs from the active equa-
tions. This pre-solving needs to be carried out only once, and the results can be
used in many consecutive deformation calculations. In the case of tool meshes, a
substantial amount of DOFs can be saved, as the response of the tools and press-
components is only required at the spots where they come into contact, or have
connections with other bodies. This means that all nodes at the interior of the tools
are not actively required either. This is clarified in Figure 2.10

Before the condensation technique is demonstrated, the linear-elastic FE problem
needs to be derived briefly. A more in-depth treatment can be found in [33, 40].
The (static) equilibrium condition forms the basis of the system of equations.







−→
∇σ (ũ(x)) = 0 at Ω

σ · n = t̃ at Γt

ũ(x) = 0 at Γu

(2.1)
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Figure 2.10: Required and internal nodes in punch and bed-plate (schematically)

Here, the stress distribution is σ, the displacement field is ũ(x). Ω defines the
deformable body in space. Γt designates the part of the boundary of the body
where traction loads t̃ are applied. The normal to the boundary surface is n. As a
boundary condition, the displacements are zero at Γu. The volume force is omitted
for the sake of clarity. An ansatz-space with a set of shape functions N is introduced
for the displacement field:

ũ(x) = Nu (2.2)

The discretized (nodal) displacements are u. As the tool deformations are very
small, the strain tensor can be calculated as:

ε(ũ) =
ũ
←−
∇ +

−→
∇ũ

2
=

(

N
←−
∇ +

−→
∇N

2

)

u = Bu (2.3)

The constitutive equation is

σ(ũ) = Cε(ũ) = CBu (2.4)

The tensor C defines the material behavior. Using Gauss’ Theorem and Galerkin’s
method, Equation 2.1 can be rewritten in the familiar form with the stiffness matrix
K and load vector f .

∫

Ω
BTCBdΩ

︸ ︷︷ ︸

u =

∫

Γt

NtdΓ

︸ ︷︷ ︸

K u = f

(2.5)

Static condensation is now used to reduce the size of the system of equations. In
the next equation, the ‘master’ DOFs with the subscript r are to be retained, the
DOFs with subscript c are to be condensed out:

[
Krr Krc

Kcr Kcc

]{
ur

uc

}

=

{
fr
fc

}

(2.6)

In case of the elastic tools the load is zero on the nodes that are condensed out,
fc=0. Therefore Equation (2.6) becomes:

K′ur = fr (2.7)

with

K′ = Krr −KrcK
−1
cc Kcr (2.8)
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Figure 2.11: The blankholder mesh (left) and the retained regions (right)

Figure 2.12: A typical rigid surface mesh (left) and a deformable solid mesh (right)

K′ has a smaller dimension, and it should be more efficient to solve.

Example
For a blankholder of a roof panel deep drawing process by Daimler AG [11, 30], shown
in Figure 2.11, static condensation reduced the amount of DOFs by 62%. A set of
load-cases was carried out with and without static condensation in ABAQUS/standard,
and the CPU time for solving the system increased by more than a factor of 10 for
the statically reduced calculation. The reason for this is that the bandwidth of the
condensed matrix K′ has become much larger than the bandwidth of K. As the
bandwidth is a major factor in the cost of the solution of the problem, static con-
densation is useful only when the amount of retained DOFs is an order of magnitude
lower than the initial amount of DOFs. In the case of elastic tool modeling, still 20
to 40% of the DOFs are retained because the entire finely meshed contact surface
has to remain available. Therefore static condensation actually makes the calcula-
tion slower rather than faster.

The reason why so many nodes have to remain is the meshing of solid bodies. In
regular deep drawing simulations, the rigid tool surfaces are meshed with a large
amount of elements that vary heavily in size and shape. This is done to keep the
mesh size minimal, while still capturing the fine geometrical details of the tool
surfaces and to retain the surface smoothness. In fact, because the elements are
not deforming they are also called ‘segments’ and there are no requirements to their
shape at all. In contrast, when the tool is meshed as a deformable solid, the element
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Figure 2.13: Principle of the DRB approach

shape has to meet more geometrical conditions. To obtain the same smoothness on
the contact surface, the mesh has to be dense at that location, as Figure 2.12 shows,
and all these DOFs are retained.

2.4 Deformable Rigid Bodies

Instead of modeling the tools and press as full FE models, they can also be modeled
as Deformable Rigid Bodies (DRBs). The term Deformable Rigid Body, introduced
by Bitzenbauer [10], seems self-contradictory but it actually describes the nature of
these bodies quite well. The deformation of such a body under a certain load is
calculated as a linear combination of a limited set of so-called modes, as shown in
Figure 2.13. Therefore, the procedure is also referred to as modal methods. Espe-
cially when the deformation is global, a sufficiently accurate calculation can already
be carried out with as little as 20 − 100 modes. The cost of such a calculation is
almost negligible compared to a regular FE calculation.

Bitzenbauer proposed to use the method in the context of crash testing, which
requires correct modeling of the dynamic (transient) response of the car body struc-
ture. The deformation of deep drawing tools can be regarded as quasi-static, and
therefore the previously derived static linear-elastic FE equation (2.5) was used in-
stead.

2.4.1 The principle

For the sake of convenience this equation is repeated here:

Ku = f (2.9)

Instead of solving the system (for example by using Gauss-elimination) to calculate
u, the displacement is calculated as a linear combination of so-called modes. In
other words, the basis of the system is changed so that the solution becomes triv-
ially simple. This is called spectral decomposition, or eigen-decomposition [7]. The
stiffness matrix K is decomposed into two matrices P and D:

K = PDP−1 (2.10)

D is a diagonal matrix, containing the eigenvalues of the stiffness matrix

Dii = λi (no sum) (2.11)
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During the remainder of the chapter, the eigenvalues and their corresponding modes
will be ordered from low to high, i.e. λi ≤ λi+1. When K is positive definite, which
is the case in a linear-elastic FE problem, the matrix P contains the eigenvectors or
modes vi:

P = [v1,v2, ...,vn] (2.12)

The eigenvectors are normalized so that |vi| = 1. In order to calculate the displace-
ments u for a given load f , the decomposed system of equations can be solved easily.
Firstly, because each eigenvector is orthogonal to the others, the matrix P is an
orthogonal too and P−1 = PT . Secondly D is diagonal, and it can be inverted by
inverting each diagonal entry. Therefore:

u = K−1f =
(
PDPT

)−1
f = P−T D−1P−1f = PD−1PT f (2.13)

The aforementioned procedure would be a very inefficient way of solving a linear
system: Calculating all modes is costly and storing the resulting (full) P matrix
would require an enormous amount of computer memory.

However, the advantage of spectral decomposition is that the displacement u can
be approximated by taking into account only the lowest m eigenvalues and modes.
This reduces matrix D to a m by m sized matrix D̃ and the reduced P is now n by
m-sized

u ≈ P̃D̃−1P̃T f (2.14)

With an increasing amount of modes, the outcome will approach the exact solution.
As will be shown later, a satisfactory approximation can already be achieved with
an amount of modes that is several orders of magnitude lower than the amount of
DOFs in the system.

2.4.2 Calculating modes

Matrices D̃ and P̃ can be constructed by calculating the first m eigenvalues and
modes. For very small matrices these can be calculated analytically by solving the
following problem:

Det(K− λI) = 0 (2.15)

Matrix I is the unity matrix. This results in a polynomial of degree n, which is solved
for λ, the roots are the eigenvalues λi. For each λi the corresponding eigenvector vi

can be found by solving

(K− λiI)vi = 0 (2.16)

These equations become very impractical and analytically unsolvable for large sys-
tems, in these cases the eigenvalues and -vectors are calculated numerically. This is
a highly developed area of mathematics and there are numerous algorithms avail-
able, each with different strengths, weaknesses and specific applications. Examples
can be found in [26, 56]. For the eigenvalue calculations required for the DRBs,
the commercial MATLAB software was applied, which uses the Implicitly Restarted
Arnoldi Method (IRAM).
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2.4.3 Approximation error analysis

When not all eigenvectors, or modes, are taken into consideration, the solution is
only approximately correct. To evaluate the magnitude of the error, the elastic
energy is the most convenient parameter. Equation (2.14) can also be written in the
following form:

u = [v1λ
−1
1 ,v2λ

−1
2 , ...,vmλ

−1
m ]








vT
1 f

vT
2 f
...

vT
mf








=
m∑

i=1

vT
i f

λi
vi (2.17)

This emphasizes the fact that the displacement is a linear combination of modes:
Each mode introduces a displacement ui, which is the mode vi multiplied by a scalar
αi:

u =

m∑

i=1

vT
i f

λi
vi =

m∑

i=1

αivi =

m∑

i=1

ui (2.18)

The goal is to calculate the amount of elastic energy that is absorbed by this dis-
placement ui

Ei =
1

2
uT

i Kui (2.19)

and to compare it to the total amount of elastic energy. The stiffness matrix K is
now spectrally decomposed as in Equation (2.10), and for each mode the following
is valid: Kui = λiui. Therefore

Ei =
1

2
uT

i uiλi (2.20)

Filling in Equation 2.17:

Ei =
1

2
uT

i uiλi =
1

2

(
vT

i f

λi

)2

vT
i viλi (2.21)

And as |vi| = 1 it follows:

Ei =
1

2

(vT
i f)2

λi
(2.22)

With this formula, it is possible to calculate the amount of energy that is absorbed
by each particular mode, and to construct an energy spectrum. When a relatively
uniform load is applied to the DRB, the amount of energy absorbed by the lowest
modes will be several orders of magnitude larger than the higher modes. When a
mode does not absorb a significant amount of energy, it can be omitted. On the
other hand, depending on the loading condition, it is theoretically possible that an
omitted mode absorbs most energy. To make an absolutely safe assessment, it would
be necessary to know the total elastic energy of the exact displacement solution. In
general, only a certain set of modes vi is available, and this value cannot be ob-
tained. However, it will be shown for an example project that analyzing the energy
spectrum already provides enough insight in practical situations.
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Figure 2.14: Regular boundary conditions and contact between press components
and tools

2.4.4 Interactions between DRBs

In the specific case of press and tool deformation, the goal is to calculate the de-
formation of several components at the same time, for example the punch, which is
bolted to the bed-plate. As pointed out in the introduction, the deformation of the
tools cannot be treated individually. Different tool and press interactions are visual-
ized schematically in Figure 2.14. The crosses indicate regular boundary conditions,
connecting two bodies. The dotted lines indicate contact between two bodies.

The first step to model interactions between press components and tools in a DRB
context is to include position (Dirichlet) boundary conditions on the deformation. It
will be shown how the penalty method can be used to enforce boundary conditions on
linear elastic FE problems and how these can be transferred to the DRB approach.
There, two possibilities exist:

• The boundary conditions are embedded in the modes. They cannot be removed
in consecutive deformation calculations. This is useful when the DRB is fixed
to the outside world with boundary conditions

• The boundary conditions are added after spectral decomposition. New bound-
ary conditions can be added and removed in each deformation calculation. This
can be used in, for example, a contact algorithm where boundary conditions
are constantly changed.

Fixed boundary conditions
For constrained FE problems, the challenge is to find a solution for the following
problem: Find the deformation vector u for a given force f , under the condition that
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the difference in displacement between DOF α and β equals d.

{
Ku = f

uα − uβ = d
(2.23)

The following analysis is a variation on the calculation in [33], pages 194-197. The
reader is referred to this book for a more extensive explanation. The boundary
condition function is rearranged into the following form:

lT u = d (2.24)

In this particular example the l-vector looks like this:

l = [0, . . . , 0, lα = −1, 0, . . . , 0, lβ = 1, 0, . . . , 0]T (2.25)

Then this function is added to the main equation and integrated to a potential I:

I(u) =
1

2
uTKu− uT f +

k

2
(lT u− d)2 (2.26)

Here, k is the penalty-factor, a large scalar. The vector that minimizes this function
is an approximate solution of the constrained problem [33]:

0 = dI
du

0 = Ku− f + kllTu− kdl

(2.27)

with M = kllT and fbc = f + kdl this can be written as:

(K + M)u = fbc (2.28)

This new equation can be solved with spectral decomposition as well, by decompos-
ing the matrix Kbc = K + M.

(K + M)u = Kbcu = PbcDbcP
T
bcu = fbc (2.29)

Flexible boundary conditions
With this procedure, fixed boundary conditions can be applied. In the following
part, the boundary conditions will be implied after the spectral decomposition.

The decomposition of the stiffness matrix can be regarded as a change of basis for
the equations. The boundary condition matrix can also be transformed to this new
basis.

(PDPT + M)u = fbc (2.30)

Now, the parameters u and fbc are transformed using the P matrix:

u = Pû (2.31)

fbc = Pf̂ (2.32)

With this transformation, Equation (2.30) can be rewritten as

PT (PDPT + M)Pû = f̂ (2.33)
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Figure 2.15: A simple FE model

Because P is orthogonal, PT P = I so this can be rewritten as

(D + PT MP)û = f̂ (2.34)

When all modes would be taken into consideration the above system of equations
is equally expensive to solve as the original system. However, when again only the
first m modes and eigenvalues are calculated D is now reduced to a m by m ma-
trix D̃. P is a n by m matrix P̃, so P̃T MP̃ also becomes m by m. Generally
the number of calculated modes m is significantly lower than the number of DOFs
n, typically around 100, therefore the solution of Equation (2.34) is very inexpensive.

When the DRB is constricted severely using this second approach, the simulant
must make sure that the calculated modes are able to capture the deformation with
sufficient accuracy. The previously introduced energy spectrum is recommended.
When it is possible to include the boundary conditions in a fixed manner, it is
always recommended to use the first approach and embed them in the modes.

2.4.5 Examples

To demonstrate the previously presented framework, a simple example problem is
evaluated. The set of springs is shown in Figure 2.15. The stiffness matrix is:

K =









12 −7 0 0 0
−7 11 −4 0 0

0 −4 10 −6 0
0 0 −6 11 −5
0 0 0 −5 5









(2.35)

The force vector is F = [0, 0, 0, 0, 30]T . The displacement vector was calculated by
inverting K. This results in u = [6.0, 10.29, 17.79, 22.79, 28.79]T .

Now, the P and D matrices are calculated by spectral decomposition:

D =









0.43 0 0 0 0
0 3.58 0 0 0
0 0 8.20 0 0
0 0 0 16.70 0
0 0 0 0 20.10









(2.36)

P =









0.18 −0.52 0.44 0.49 −0.52
0.30 −0.62 0.24 −0.33 0.60
0.47 −0.25 −0.60 −0.39 −0.46
0.55 0.15 −0.34 0.65 0.37
0.60 0.52 0.53 −0.28 −0.12









(2.37)
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Figure 2.16: The energy spectrum for the spring example

For the approximated solution, the last eigenvalue of 20.10 and the accompanying
mode in the last column of P will be omitted. The resulting displacement field is
ũ = [5.90, 10.40, 17.70, 22.85, 28.76]T . The relative error in the vector norm amounts
a negligible 0.4%. This was expected from the elastic energy assessment, which was
introduced in Section 2.4.3. In Figure 2.16, the elastic energy for each mode is
shown for this particular load vector. The first mode captures almost 90% of the
total elastic energy already. It is not really necessary to know the total amount of
energy: The fourth and fifth mode require less than one percent of the energy for
the first mode, so they can be left out safely.

Now a boundary condition is applied to the original system:

u4 − u2 = 10 (2.38)

When the penalty factor is 105, this results in a boundary condition matrix:

M =









0 0 0 0 0
0 105 0 −105 0
0 0 0 0 0
0 −105 0 105 0
0 0 0 0 0









(2.39)

and a new force vector:

fbc = [0,−106, 0, 106, 30]T (2.40)

The result is a displacement vector ubc = [6.0, 10.29, 16.29, 20.29, 26.29]. Note that
the boundary condition has been satisfied.

The final goal is to apply the boundary condition and leave out the highest mode at
the same time using the flexible approach. Therefore the boundary condition matrix
needs to be transformed:

PT MP =







6468 19502 −14640 24937
19502 58805 −44145 75192
−14640 −44145 33140 −56447

24937 75192 −56447 96145







(2.41)
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Figure 2.17: Normalized error (%) in displacement

The force vector is also transformed (Equation (2.32)), f̂ = [254342, 766863,−575664, 980530]T .
Now equation 2.34 is solved resulting in û = [38.69, 3.06, 2.35,−0.85]T .

Finally, the displacements can be transformed back and yield

ũbc flexible = [5.94, 10.35, 16.25, 20.35, 26.30]T (2.42)

which means a relative error of 0.3% in the vector norm. By leaving out two modes
the relative error still remains below 5%, and the results become marginally worse
with only two modes left. The error amounts 12% then.

For larger systems, acceptable accuracy can be achieved using a very small fraction
of the available modes. For example, a die from an industrial forming process [11] is
loaded with the contact forces at the end of the forming stage, in this case derived
from a PAM-STAMP simulation. The die is a solid mesh with 180.000 DOFs. In
the DRB-approach only 10 modes were used. The error in the nodal displacement
is shown as a percentage of the maximum displacement (0.4mm) in the contour plot
of Figure 2.17. The accuracy of the DRB approach is so high, because the load
is uniformly distributed, and the boundary conditions allow a global deformation.
When the bottom of the die is fixed, to model a very stiff bed-plate, the deforma-
tions become very local and the approximation error will become much larger.

The interaction between two DRBs was also investigated. A simple contact algo-
rithm was implemented [46], using the penalty method and the previously described
flexible boundary condition scheme. In this case, a connection plate, which supports
the die, is added to the system. Figure 2.18 shows the deformed bodies. In this DRB
calculation, each body was modeled with 20 modes only.
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Figure 2.18: Deformation of the die and connection plate (exaggerated)

Figure 2.19: The Bernoulli beam example
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Figure 2.20: Displacement error in the Bernoulli beam displacements

2.4.6 Reducing the mesh-dependent error

Even when the results clearly demonstrate the potential of the DRB approach, the
accuracy can be improved further. In the method presented above the modes and
eigenvalues are directly dependent on the discretization. When the geometry is not
meshed uniformly, the approximation error varies for different mesh-discretizations.
It is most convenient to clarify the problem with an example problem: A beam
with a length of 1 is clamped at x = 0 and bent downwards due to an uniformly
distributed force with a value of 1. For reasons of simplicity the beam’s bending
stiffness EI is also taken as 1. The problem, shown in Figure 2.19 can be described
with the differential equation by Bernoulli:

EI
d4u(x)

dx4
= w(x) (2.43)

and the boundary conditions:

d3u(x)
dx3

∣
∣
∣
x=1

= 0 d2u(x)
dx2

∣
∣
∣
x=1

= 0 du(x)
dx

∣
∣
∣
x=0

= 0 u(x)|x=0 = 0 (2.44)

Instead of finding the displacement u(x) by solving the problem analytically, an FE
approach was chosen, using Bernoulli beam-elements, see [33], p.48 and [40], p.301.
Two meshes were investigated; a uniform mesh and a nonuniform mesh, both with
6 elements. Because each node has both displacement and rotational DOFs, there
are 12 DOFs. Regardless of the topology of the mesh, the FE solution is exactly
equal to the analytical solution at the nodes.

The solution is now approximated using the DRB-approach, using the lowest 4 modes
of the 12 available. For the two meshes, the relative displacement error due to the
modal approximation was calculated and visualized for each node in Figure 2.20 as
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Figure 2.21: Nodes on Γ and Ω

the lines uniform F and nonuniform F. Note that the relative error is indefinite at
the node of x = 0 because the displacement is zero there. It is clear that the error
is significantly larger for the nonuniform mesh.

This problem will also be present in real tool/press deformation problems. Even
when highly non-uniform meshes are unusual for solid geometries, a mesh depen-
dent error is undesirable. The solution to this problem is to take the discretization
into consideration during the modal approximation. In the following subsection, an
improved method is presented, using the so called S-modes.

S-modes
In the previous DRB-formulation, the load force vector was linked to the displace-
ment using the stiffness matrix. The resulting modes will be called Force-modes or
F-modes. Instead, it is better to use a load stress vector in determining the modes, as
the following procedure will show. Returning to the Galerkin form (Equation (2.5)):
The traction load on the body is now also discretized using the shape functions N

t̃(x) = Nt (2.45)

∫

Ω
BTCBdΩ

︸ ︷︷ ︸

u =

∫

Γt

NTNdΓ

︸ ︷︷ ︸

t̂

K u = S t

(2.46)

The S-matrix is quite similar to the mass matrix used in dynamic analyses, however,
the integral is taken over the boundary only. S and in fact the entire Equation (2.46)
is split up in two sections. The DOFs with subscript Γ are on the surface of the
body, the remaining displacements are designated with an Ω.

[
KΓΓ KΓΩ

KΩΓ KΩΩ

] [
uΓ

uΩ

]

=

[
SΓΓ SΓΩ

SΩΓ SΩΩ

] [
tΓ

tΩ

]

(2.47)

It is clear that the value of the boundary integral of the S-matrix:

S =

∫

Γt

NTNdΓ (2.48)

is nonzero at the outside nodes only. Therefore SΓΩ,SΩΓ and SΩΩ are zero. A
traction-load can only be present on the outside of the body, therefore tΩ = 0.
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Equation (2.47) can be split to calculate the displacements on the outside only in
the following way:

(
KΓΓ −KΓΩK−1

ΩΩKΩΓ

)

︸ ︷︷ ︸
uΓ =

(
SΓΓ −KΓΩK−1

ΩΩSΩΓ

)
tΓ

K uΓ = SΓΓtΓ

(2.49)

Note that the above procedure resembles static reduction. In this case, the proce-
dure is necessary because otherwise the system would be singular. This implies that
the (dis-)advantages of static reduction apply too: The size of the system is reduced,
however, solving it is more expensive due to the increased bandwidth of K. This is
not a big problem since the modal calculations need to be carried out only once.

Equation (2.49) needs to be transformed to a single matrix equation so it can
be approximately solved with the aforementioned modal procedure. When SΓΓ is
(Cholevsky) decomposed

SΓΓ = LTL (2.50)

Equation (2.49) can be rewritten as:

KuΓ = LTLtΓ

L−TKuΓ = LtΓ

L−TKL−1LuΓ = LtΓ

(2.51)

resulting in:

Ku = t (2.52)

with the symmetric matrix K = L−TKL−1, u = LuΓ and t = LtΓ. Because this
equation has the same structure as a regular linear-elastic FE equation (see Equation
(2.9)), it can also be approximated in a modal way, as explained in Equations (2.10)-
(2.14):

ū = P D
−1

P
T
t (2.53)

The modes in P are now called S-Modes.

Verification with the Bernoulli beam problem
The Bernoulli beam problem was also solved using S-modes. Again, 4 out of 12
modes were used. Figure 2.20 shows the results in the lines uniform S and nonuni-
form S. In comparison with the F-modes the error has decreased significantly for
the nonuniform mesh, even below the error of the uniform mesh.

For the uniform mesh, there is only a small difference. Theoretically, the results
should be completely identical because the loading stress field will be just as uni-
form as the loading force field so there is no discretization difference to take into
account. It is suggested that the small differences are due to the lumped calculation
of the boundary surface matrix.
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The fact that the error for the S-modes approach is even lower for the nonuniform
mesh than the uniform mesh is an artefact of this particular model. The first mode
coincidentally captures the exact deformation very well.

Again, the elastic energy that is absorbed per mode can be used as a check for the
error of the approximation. The total elastic energy of a deformed body can be
calculated in a way that is principally identical to the calculation for the F-modes
in Equations (2.19)-(2.22):

Ei =
1

2

(v
T
i t)2

λi

(2.54)

2.5 Including DRBs in the forming simulation

In the previous section, the S-modes were derived and it was shown how a deforma-
tion calculation can be carried out for a simple example. The goal of this section is
to include the DRB-approach into the FE forming simulation. There are two ways
to achieve this:

• Coupled

• Decoupled (staggered)

These methods are shown schematically in Figure 2.22. The best way is to include
the tool deformation in the forming simulation code directly. The additional DOFs
from the DRBs are added to the system matrix. The contact algorithm needs to be
adapted for the two-sided-deformable situation. In order to benefit from the numer-
ical efficiency of the DRBs, the contact boundary conditions need to be transformed
to the modal basis, as demonstrated previously. The implementation of these fea-
tures in a FE code for forming is complex, both in terms of algorithms and the
data structure. However, the advantage is that, like in an implicit FE analysis, an
equilibrium state is calculated exactly in each increment.

Since the deformation of the tools can be characterized as quasi-static, such a com-
plex implementation is not necessary. From an implementation point of view, a more
efficient method is to decouple the tool/press deformations from the simulation, as
proposed in [37]: The simulation is halted at a certain point in time. The pressures,
acting on the (rigid) tools, are exported and used as a load-inputfile for an external
tool deformation calculation. The deformed tool geometries are then transferred
back into the calculation and the simulation continues up to a next halting point.
The procedure is repeated for each halting point until the product is finished.

A DRB-module was implemented in the DiekA FE code, developed at the Uni-
versity of Twente [3]. The mesh-independent S-modes approach was applied. The
tool deformation calculation is carried out after each forming increment. The main
features of the code, like the contact algorithm, were left unchanged. Due to the
decoupling, the deformation lags the load by an increment, and instabilities rise in
the tool deformation. For example, Figure 2.23 shows the growing oscillations in
the multiplication factor α for the 3rd mode. These oscillations need to be reduced
numerically. This is achieved by calculating the deformation as a weighted average
over the last 5 steps.
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Figure 2.22: Two ways to incorporate tool deformations

Figure 2.23: Instabilities occur during forming
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Figure 2.24: The contact area of the die used in the modal approach

2.6 Simulating the cross-die benchmark using DRBs

All three tools, blankholder, die and punch were modeled as DRBs. The supporting
pins were modeled as fixed nodal boundary conditions on the die and blankholder.
This is not entirely realistic, as in the experiment the tool might lift off a pin, but
modeling the pins with contact conditions would make the analysis very complex.

Only the deformations of the contact area of the tool are included in the active
set of DOFs uΓ, the other deformations are not calculated and set to zero in the
visualization. This area is shown in Figure 2.24.
A set of 100 S-modes was calculated for each tool. In Figure 2.25 the first four modes
of the die are shown. For clarity, a square contact area was used for this picture.
The first two modes are tilting deformations, followed by a global bending mode and
a saddle mode. As the eigenvalue increases, the shape of the mode becomes more
complex.

The deformation of the die in the last increment of the forming simulation is in-
vestigated: The energy spectrum (Figure 2.26) shows that the third mode absorbs
the largest amount of energy. The 8th mode also has a significant contribution, the
other modes could be omitted already. This is easily explained: due to the rela-
tively uniform load and the boundary conditions modeling the supporting pins, the
deformation can be captured well by the third mode, which is a global bending mode.

Numerical cost
The DiekA simulation was run on a single-processor SPARC machine using Sun So-
laris and required 6.5 hours for the rigid tools, and 7 for the deformable DRB-tools,
an increase of only 8%. The preprocessing and eigenvalue-solving required an addi-
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Figure 2.25: The first 4 modes of the deep drawing die

tional 30 minutes for each tool. In comparison, the reference ABAQUS calculations
were carried out on a 2-Processor HP-UX system, and the simulation required 24
CPU-hours for the rigid tools and 72 hours for the deformable tools, an increase of
200%.

Accuracy of the DRB approach
Such a time-saving is only useful if the reliability of the results is retained. In Figure
2.27 the pressure distributions are compared between an ABAQUS reference calcu-
lation with and without deformable tools [46] and the DiekA calculations with rigid
and DRB-tools. It is clear that there are quantitative differences, but the DRB-
approach shows the same differences to the calculation with rigid tools. At (a), the
spacers partially overtake the blankholder load and at (c) the blank corners also
experience a larger pressure. In exchange, the high-pressure spot at (b) decreases in
size, allowing a larger blank draw-in.

The quantitative differences between ABAQUS and DiekA simulations cannot be
overseen. However, they already occur when rigid tools are used in both codes.
There are always implementation differences in different FE-codes, especially when
they, like DiekA, are optimized specifically for forming. However, in this case, the
main cause is the use of solid-shell elements in ABAQUS. These elements are re-
quired when the thickness change is to be taken into consideration. This is highly
desirable for any forming simulation and essential for this particular process. For
unknown numerical reasons, the solid-shell elements (SC8R) show a considerably
smaller thickness change than the regular shell elements, as Figure 2.28 shows.
Therefore the high pressure spots are too small, as experiments reveal that the
simulation by DiekA is closer to reality [46].

2.7 Conclusion and outlook

Even when tool and press deformations are small, the influence on the blank draw-in
and consecutively many other quality issues, such as the risk of rupture, wrinkling
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Figure 2.26: Energy spectrum of the first 10 modes

and springback, is clear. Deformable Rigid Bodies provide a possibility to take these
deformations into account during the forming simulation. Because the added nu-
merical cost (8% in the case shown) is very small there is no reason to not take the
tool deformation into consideration. This confirms hypothesis 1b, Press and tool
elasticity can be included in the forming simulation at an acceptable cost.

In the cross-die example, only the tools need to be modeled elastically. However,
in industrial forming processes the press plays an important role too. Due to the
efficiency of the DRB approach, the entire press/tool structure could be taken into
account. This would enable the process engineer to do a true virtual factory test of
the forming process and reduce the amount of tool reworking.

Despite promising results, the existing planning process may not be ready for FE
simulations with deformable tools yet. The reason for this is that the design of the
tools might not be completed when the forming simulation is carried out. The plan-
ning procedure could be changed, but then the advantage of deformable tool models
should be proved in much more detail, with experiments as well as simulations.

However, the method will be of great use when a flexible blankholder is used. The
DRB approach will be able to show the changes in the blankholder pressure dis-
tribution as a result of nonuniform loading. This can already be made clear in
the blankholder closing phase, before forming is started. It is easier to verify the
results in this context, as a blankholder loading simulation is less complex than a
full forming simulation, and the pressure distribution can be measured experimen-
tally, using pressure foil under the blank. Further research in this direction is highly
recommended, because here the approach includes a clear practical use and a clear
verification procedure, and the process planning does not need to be changed.
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Figure 2.27: Contact pressure on the blank at the end of the forming process for
ABAQUS and DiekA simulations

Figure 2.28: Blank thickness, ABAQUS solid-shells (left) and regular shells (right)
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Glossary

α mode factor
Γ boundary surface
ε strain
λ eigenvalue
Π potential
σ stress
Ω body
B B-matrix (FE)
C material behavior matrix
d distance in boundary condition
D eigenvalue matrix
ε strain
E elastic deformation energy
EI bending stiffness (beam theory)
f load vector
I unity matrix
k penalty factor
K stiffness matrix
l boundary condition vector
L decomposed boundary surface matrix
M boundary condition matrix
n surface normal
N shape functions matrix
P mode matrix
S boundary surface matrix
t̃ traction load
t discretized traction load
ũ displacement field
u discretized displacements
u(x) deflection of beam (beam theory)
v eigenvector
w(x) distributed load (beam theory)
x 1-dimensional coordinate
x coordinate in cartesian space
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Chapter 3

Computer-aided Springback

Compensation

3.1 Introduction

Springback is the deformation of the blank that occurs when the forming tools are
opened. In Figure 3.1 the numerically predicted springback of a front fender is
shown. As the figure shows, the deformation can be considerable, leading to prob-
lems in the assembly process of the car-body. In order to produce parts with the
correct shape, the forming tools must be compensated. As pointed out in the in-
troductory chapter, springback is hard to predict and as a result the compensation
requires a lot of trial-and-error, which is time-consuming and costly. Industrial
sources state that springback-related issues cost the American car industry over $50
million per year [70].

In scientific publications, springback is in many cases analyzed using two-dimensional
geometries, for example the bending of a bar [68], or the forming of a hat-profile,
both experimentally [80, 15] as well as in simulations [55]. The influence of in-plane
stretching is generally neglected in the analysis. Springback is then mainly charac-
terized by unbending due to internal moments, the in-plane stresses are neglected.
An extensive overview of these publications can be found in [70, 54], including both
experimental and numerical results.

Industrial products, such as the front fender of Figure 3.1, have complex three-
dimensional shapes. The geometry of the panel is generally double-curved and non-
developable, and due to the (repeated) bending-unbending and in-plane stretching
of the material the stress distribution becomes more complex. This may cause the
panel to twist, rather than just unbend. As an additional complexity, high-strength
steels and aluminium used in today’s car-body parts, show large springback. Heavy
springback and twisting are also likely to occur when a trimming stage is present in
the process, because the large internal stresses that are present in the relatively stiff
cup-shaped drawing product are released to the more flexible cut-out blank.

These phenomena make springback hard to handle for the die engineer, as well as
the simulation code. The current procedure in solving springback problems will be
discussed in Section 3.2. Section 3.3 explains the principles and problems of the two
best known springback compensation algorithms: Displacement Adjustment (DA)
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Figure 3.1: Springback (normalized) on a front fender

and Springforward (SF). Rather than using FE results, the research is based on an
analytical model for a stretch-bending process. This model also suffers from the
limitations of a 2D model, but it does show the effect of in-plane stretching, an
important aspect of the physics of the deep drawing process. This provides a clear
view on the principles and problems of each algorithm. The goal, however, remains
the compensation of springback for industrial products. The tools have to comply
with many practical considerations that provide new challenges. These are the focus
of Section 3.4, and the resulting algorithm is demonstrated for different processes in
Section 3.5.

3.2 Handling springback in industry

3.2.1 Springback measurement and assessment

Due to its unpredictability, springback is rarely compensated beforehand in the the
CAD design and FE testing phases. Instead, the key point is to avoid springback
as much as possible by introducing large plastic strains in the product (as will be
explained in Section 3.3). Springback compensation should only be applied to resolve
geometrical errors as a last resort. The question whether compensation is required
can be answered by assessing the following three points

• Measurement of the geometrical error (see Figure 3.2)

• Measurement of the restraining forces

• Functional analysis

Careful analysis is required because of the flexibility of most sheet metal parts.
Depending on the position of the product during measurement and the way the
product is held in position, deformations already occur due to gravity and the fix-
ation clamps. Even handling procedures may influence the springback assessment
[20].
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Figure 3.2: Springback measurement on a structural part (Daimler AG)

When the product is used in a larger assembly, two situations might occur. Consider
an outer car body part consisting of an inner panel and an outer panel, for example
the front fender. When the inner panel has a major function in the stiffness or
crashworthiness of the car body it is generally made of thicker sheet material. The
geometry of this part should be exactly right, and correct springback compensation
is essential. The outer panel is generally more flexible. So, even when the geomet-
rical error is high, the product can be pushed back into the correct shape before
joining, and a satisfactory assembly is obtained. Compensation is not required in
this case. However, to make sure the assembly is not distorted by the push-back
forces, these need to be measured. As a rule of thumb, 30N is the maximum admis-
sible force for fixing body panels during welding [1].

In other cases, both the inner and outer panel are flexible and the final assembly
obtains satisfactory stiffness only after the parts have been joined. In this case, there
are also possibilities to avoid springback compensation, for example by optimizing
the joining fixation: the parts are slightly deformed by the joining fixation clamps
and joined under strain. After release, a satisfactory geometry is obtained. This is,
however, a very sensitive procedure and when errors occur, large planning problems
will emerge. The outer body panel generally has to meet very tight geometrical
tolerances (see 4) and remaining internal stresses might distort the outer surface
appearance to an undesirable extent.

Material and process variability
An important aspect to consider when or when not to apply compensation is the
variability of the material. Due to variations in the batches of sheet metal, consid-
erable differences may occur in the product’s springback. For example, according
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to DIN norm 10079 the thickness of the sheet material has a tolerance margin of
10%, and mechanical properties such as the yield-stress are mainly regarded as
lower bounds, so the actual value can vary considerably. At the moment, manual
springback compensation is based on products made on a prototype press in very
small series. There, rather large deviations occur in the final part geometry, making
the compensation less reliable, even when it is based on real measurements. This
shows that the springback challenge is greater than the numerical aspect alone. As
a side-note, this issue is attracting more and more attention from an FE simulation
perspective [81, 12].

3.2.2 From manual to numerical springback compensation

In almost all cases, the measurements on the prototype parts indicate a remaining
springback issue, either a geometrical error or large push-back forces, and compen-
sation is required. The most simple form of springback compensation is applied
in a (tube) bending process. Generally, the product needs to be bent further for
it to spring back into the desired shape. Because the tube has been bent further,
springback has also increased slightly. So, in the case of the tube, the amount of
compensation is larger than the amount of springback. A correction factor, the so-
called springback compensation factor a, is applied. This factor is well-documented
in tables for bending processes [?].

The same principle can be applied to more complex geometries. The compensation
is carried out by CAD engineers of the tool design department. Based on 3D geo-
metrical measurements, the surfaces are displaced in the direction opposite to the
geometrical error. For this type of compensation, the compensation factor cannot
be predicted and documented well. The problem is even more complex: To obtain
maximum accuracy, the compensation needs to be carried out differently at differ-
ent spots on the product. Consequently, a large number of experiments and a lot of
experience are required to find a satisfactory tool shape.

Chu et al. [20] were the first to replace experimental springback measurements with
FE predictions. This brings considerable time-savings for the process planning, be-
cause computer simulations require much less time than tool reworking followed by
a forming experiment. However, the compensation was still carried out manually by
Chu et al. The objective of this chapter is to increase the efficiency and accuracy of
numerical springback compensation by developing a dedicated compensation algo-
rithm.

When FE springback prediction is used as a basis for compensation, the compensa-
tion can only be as accurate as the simulation, and as reliable as the process itself.
The topic of this chapter and thesis is on the compensation of springback, and not
specifically the springback prediction itself. In any case, it must be pointed out that
efficiency increases even when the FE springback prediction is only moderately ac-
curate: The remaining problems that need to be solved on the real press are reduced
significantly.
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Figure 3.3: The forming shape

3.3 Compensation algorithm principles

As explained in the previous section, there is no clearly defined procedure to find the
correct tool geometry, either in the case of measurement-based or numerically-based
springback compensation. A straightforward approach is to define a set of geometri-
cal parameters, for example using the part’s CAD description, and to optimize these
parameters to minimize the shape deviation between the sprung-back geometry and
the desired geometry. This was carried out in [25] for a simple u-profile process.
Industrial products feature complex shapes, and their CAD geometries are defined
by thousands of parameters. It is unfeasible to take all these parameters into con-
sideration in an optimization procedure.

Therefore, two specific springback compensation algorithms have been published:
Displacement Adjustment, or DA, and Spring Forward (SF). DA, developed by Gan
and Wagoner [24, 23, 71] is based on the geometrical principle that was explained
with the tube bending process in the previous section. SF was developed by Karafil-
lis and Boyce [36, 35, 34]. The SF method has a more physical approach, based on
reversing the internal stresses that cause springback.

To avoid many die design-related issues, the goal of the algorithms presented in this
section is to find the optimal forming shape. This is the shape of the product when
the tools are still closed (see Figure 3.3). The shape of the forming tools needs to
be derived from this forming shape. This will be the focus of Section 3.4, where the
compensation method will be expanded to work for industrial forming processes as
well.

3.3.1 Displacement Adjustment

DA springback compensation is based on the previously introduced principle of over-
bending. ~d, the desired geometry and ~s, the springback geometry are topologically
identical sets of points. Topologically identical means that the geometry is mathe-
matically built-up in the same way. Another way to formulate this requirement is
to require that there exists a one-to-one mapping from each point ~si on geometry ~s
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Figure 3.4: Principle of the DA method

to another point ~di on ~d.

~s = [~s1, ~s2, ~s3, ..., ~sn] (3.1)

~d = [~d1, ~d2, ~d3, ..., ~dn] (3.2)

When FE meshes are used, these points are represented by the nodes. The compen-
sated forming shape ~c is also topologically identical to ~d and ~s.

~c = [~c1,~c2,~c3, ...,~cn] (3.3)

It is found in the following way:

~c = ~d− 1 · a(~s− ~d) (3.4)

When compensation factor a has a value of one, this equation means that the shape
deviation due to springback is reversed and added to the desired geometry. The
assumption is that a product that is formed to the compensated forming geome-
try ~c will spring back to the desired geometry ~d. Analogously to the tube-bending
problem, this assumption is never fulfilled exactly due to nonlinearities in the deep
drawing process: after compensation the forming process and the resulting spring-
back will be slightly different. Two solutions are suggested:

• To find an optimal value for the compensation factor

• To use an iterative procedure to find the optimal forming shape ~c

The DA method was initially proposed as an iterative procedure in [24, 23, 71]. The
initial forming shape ~cj=0 is generally the desired shape. The forming shape in the
(j + 1)-th iteration is found with the following recursive equation:

~cj+1 = ~cj − 1 · (~sj − ~d) (3.5)

Note that each point in ~c is adjusted independently so that it is theoretically possi-
ble to achieve a fully optimal forming shape.

Distance field
Instead of using the shape deviation field:

~ξ = ~s− ~d⇔ ~ξi = ~si − ~di (3.6)
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Figure 3.5: Principle of the distance based DA method

Figure 3.6: Displacement (a) vs. distance (b) field

a distance field could also be used between ~s and ~d. For example, the normal dis-
tance field is visualized in Figure 3.5.

This approach is sometimes the only available method, for example when the com-
pensation is based on measurements instead of FE springback predictions, or when,
as in Figure 3.5, ~d and ~s are not topologically identical. However, the use of a dis-
placement field is generally preferred because especially when springback is large, the
displacement field will be smoother and provide more information. This is demon-
strated for a very simple example in Figure 3.6. The arrows in (a) indicate the
springback displacement field, the arrows in (b) the distance field.

3.3.2 Spring Forward

Instead of compensating springback based on a geometric displacement field, the
springforward method uses the cause of springback, the internal stresses. The pro-
cedure is presented in the flowchart of Figure 3.7, taken from [36].

As presented in the papers, the algorithm is suitable only for 2-dimensional geome-
tries that is modeled in FE using beam elements. The main idea is to capture the
internal moments in the blank after forming. When the tools are released, these
moments cause the blank to spring back. In the compensation procedure, these un-
bending moments are reversed and applied to a virgin blank in the desired geometry.
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Figure 3.7: Springforward algorithm flowchart [36]

This virgin blank consists of the same material, but it does not have any internal
stresses. Due to these moments, the virgin blank will ‘spring forward’ in the oppo-
site direction, delivering the compensated forming shape ~c. This is demonstrated
schematically in Figure 3.8.

Similarly to the DA method, the SF method was presented as an iterative procedure.
Therefore, in a consecutive iteration with the new forming shape ~c1, the internal
moments are captured again. These are applied to the virgin blank to produce form-
ing shape ~c2. In this way, the method is repeated until a stable solution is achieved.
However, Wagoner points out that, compared to the (iterative) DA algorithm, the
SF algorithm “converges more slowly, if at all, or may converge to incorrect die
shapes” [71].

The problem is that, unlike the DA procedure, there is no fixed geometrical target
for the optimization process. In fact, there is no reason for the blank to converge
further to the desired shape after the first iteration. This can already be demon-
strated using the elasto-plastic stretching of a bar as a model for the deep drawing
process. This is a one-dimensional problem, and instead of the unbending moments,
the stretching force at the end of the forming stage is used in the SF procedure.

So, in the first iteration the product is stretched from a length of 1 towards its target
length 1.025. The tension stress is calculated using the stress-strain curve of Figure
3.9, and then the bar is unloaded. The tension stress is reversed and applied to a
virgin bar with the desired length to produce the first compensated forming shape.
Now the bar is stretched to the length of the compensated forming shape, again, the
required tension stress is calculated. This way 6 iterations are carried out, and the
results are listed in table 3.1
The process converges, but a shape error remains. The DA method was also applied
in the bar-stretching example and converges to the correct shape very rapidly, as

56



Figure 3.8: The Springforward algorithm principle

Figure 3.9: Material model for the bar stretching model

j lj σj(MPa) lsb shape error(%)

0 1.025 545 1.022275 100
1 1.0277931 550.58625 1.025040194 1.475
2 1.0278218 550.6435091 1.025068537 2.51511875
3 1.027822 550.644096 1.022275 2.525779967
4 1.0278221 550.644102 1.022275 2.525889245
5 1.0278221 550.644102 1.022275 2.525890365

Table 3.1: Results of the SF method for the bar-stretching model
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Table 3.2 shows.

j lj σj (MPa) lsb shape error(%)

0 1.025 545 1.022275 100
1 1.027725 550.45 1.02497275 1.0
2 1.0277523 550.5045 1.024999728 0.01
3 1.0277525 550.505045 1.024999997 0.0001
4 1.0277525 550.5050505 1.025000000 9.99999E − 07
5 1.0277525 550.5050505 1.025000000 9.99999E − 07

Table 3.2: Results of the DA method for the bar stretching model

Another problem is that in the original description, the unbending moments were
used. This is only possible in the case of a one or two-dimensional FE model, for
a three-dimensional problem springback is caused by the complex internal stresses
in the blank. There is no obvious way to ‘reverse’ these internal stresses. However,
it is proposed here to use a nodal force field. This field is calculated by constrain-
ing all blank nodes in all directions after forming. The reaction forces then form a
springback force field, which can be reversed and applied to a virgin blank-mesh to
cause the spring forward deformation.

The push-back step
To solve the faulty convergence of the SF method, another step is introduced in
the SF iteration: the push-back step (see Figure 3.10). After a forming simulation,
the blank is allowed to spring back. After this, the blank is pushed back into the
desired shape, delivering the push-back force field. With this push-back force field
the product is compensated. Another important change is that, in the second and
following iterations, the compensation is carried out on the compensated geometry
of the previous iteration. In this form the method is now called Push-back Spring-
Forward or PBSF

Even when the two problems of SF, faulty convergence and three-dimensional ap-
plication, are theoretically solved with this principle, the results remained unsatis-
factory even for simple problems, such as the deep drawing of a nap. This happens
because after forming, a large in-plane tension is found in the product. When, dur-
ing the springforward calculation, this state is reversed, large compressive stresses
occur. This makes the deformation unstable, in a similar way to the findings of
Gan [24], and in some cases the FE calculation of the springforward step failed to
converge [43]. Because of these problems, the (PB)SF method was not investigated
further.

3.3.3 Analytical verification of iterative and one-step DA

The main focus of springback compensation is its use in combination with FE sim-
ulations. However, these simulations require large calculation times and comprise
several complex physical and numerical phenomena. Therefore, firstly, an analyt-
ical model of a forming process was used to investigate the properties of the DA
method. Besides the fast and reliable calculation, this has another advantage: since
the model is straightforward and because it only has few parameters, it can also
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Figure 3.10: Principle of the PBSF method

provide principal insights in the compensation process. In this section, the following
questions will be answered:

• How can the optimal forming shape be calculated directly?

• What is the relationship between process parameters and the compensation
factor?

• What is the relationship between the desired geometry and the compensation
factor?

• Does the iterative DA variant perform better than the one-step method?

• How does the convergence of the iterative variant relate to process parameters
and desired geometry?

The text in this section is strongly based on the journal paper co-written by Gan
and Wagoner [45].

The stretch-bending model
The analytical forming model [73, 74] represents a stretch-bending process that was
developed to assess the accuracy of FE springback calculations. An initially straight
bar is bent to a forming shape with radius R due to a bending moment M and a
tension force T . When the loading moment is removed, the bar springs back to a
radius r (Figure 3.11).

The strain ε in the direction along the beam is calculated in the following formula.
The tension strain is εt.

εxx = ε =
z

R
+ εt (3.7)
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Figure 3.11: The analytical stretch-bending model and the main model parameters

By filling in ε = 0 the neutral line z0 can be found:

ε = 0⇔ z0 = −Rεt (3.8)

An elasto-plastic material model was chosen, using the Hollomon law:

σ =







σ0 +K(ε− σ0

E )n σ > σ0

Eε −σ0 < σ < σ0

−σ0 −K(|ε− σ0

E |)
n σ < −σ0

(3.9)

In this model, E is Young’s modulus, σ0 is the initial yield stress, K and n are
parameters for the hardening behavior. At the end of the deformation stage, the
bar is held in equilibrium by the tension force T and the moment M . These can be
calculated analytically as follows:

T =

∫ t/2

−t/2
σwdz (3.10)

M =

∫ t/2

−t/2
σzwdz (3.11)

In this foprmula, w is the width of the beam. Details of the model’s assumptions
and the calculation of these integrals can be found in [73]. It is important to notice
that only the springback caused by the unbending moment is considered for the
equilibrium of the model. The tension force along the bar is only applied as a fictive
strain. The radius R after springback can be calculated with the following formula
[75]:

1

R
−

1

r
=
M

EI
(3.12)

Direct calculation of the optimal forming shape
In the case of the analytical model, no compensation strategy is required: For a
given desired radius after springback rtarget, the required forming radius R̄ can be
directly calculated from Equation (3.12):

1

R̄
−

1

rtarget
=
M

EI
⇔

EIrtarget
M(R̄)rtarget + EI

− R̄ = 0 (3.13)

Since M = M(R̄), this is a nonlinear equation. The function is well-behaved so that
a bisection algorithm [56] was used to find R̄ numerically. In Figure 3.12 the results
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Figure 3.12: Optimal forming radius R̄ for various normalized tension forces

Figure 3.13: The unbending moment for pure bending (left) and a large tension load
(right)

are visualized for various values of the normalized tension force T̄ . Normalized
means in this context that the tension force is divided by the force, required to
achieve plastic deformation under tension only:

T̄ =
T

σ0wt
(3.14)

The desired radius was set at rtarget = 1.0 and rtarget/t = 100. This is a shallow
curvature, which represents the shape of many automotive body panels. When the
stretching force is increased, R̄ converges to rtarget.
The explanation for this phenomenon is that, as in more complex forming processes,

springback decreases with increasing in-plane tension [41]. The stress-state over the
thickness of the bar is compared in two situations: with no additional tension load
and with a large tension load. The stress profile over the thickness of the bar is
visualized schematically in Figure 3.13. When the elastic zone is no longer present
anymore in the bar, the stress state gets a gentle slope and the unbending moment ,
and therefore springback, diminishes. In this case, the bar can be bent to the desired
shape directly and no compensation is required, as Figure 3.12 shows.

One-step Displacement Adjustment
Firstly, the focus is on the one-step application of the DA method. The DA method
relies on displacement data, whereas only bending radii R and r are calculated in
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Figure 3.14: Optimal compensation factor for two different steels at varying tension
force, R/t = 100

the analytical model. However, the springback displacement u at the end of the bar
can be derived directly from these variables and the length of the bar l, as shown in
Figure 3.11.

u(R) =
√

R2 − l2 +R (3.15)

With the springback displacement and the optimal forming displacement, the opti-
mal compensation factor ā can be directly derived using Equation (3.15):

ā = −1 ·
u(R̄)− u(rtarget)

u(r)− u(rtarget)
(3.16)

The results are shown in Figure 3.14. In the graph the compensation factor is
drawn for a varying tension force T , and for two materials; interstitial free (IF)
steel and DP-600 (see table 3.3 and Figure 3.15). When an elastic band is present
inside the bar (for IF steel T̄ < 1.32) the compensation factor rises with increasing
tension. When the force is so great that the bar is deformed plastically in the en-
tire cross section, the compensation factor becomes 1.0. It can also be concluded
that for higher strength materials, a higher compensation factor needs to be applied.

Young’s Modulus Yield Strength K n

IF-Steel 210 GPa 150 MPa 425 MPa 0.40
DP-600 210 GPa 420 MPa 600 MPa 0.47

Table 3.3: Material data

Now, why is a compensation factor required at all? In the one-step application of
DA it needs to be applied because the forming process is nonlinear: after springback
compensation, the forming process has changed and springback has become different
as well.

For this analytical example the only parameter that is changed during compensa-
tion is the forming radius. Changing the forming radius will change the amount of
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Figure 3.15: Stress-strain curves for IF-Steel and DP-600

springback. When the tension strain is considered, this change is different in three
cases:

• εt = 0, pure bending

• 0 < εt ≤
t

2R , elastic band inside the bar

• εt >
t

2R , fully plastic deformation

Therefore, different compensation factors are required, which explains the complex
shape of graph 3.14. The stress profiles inside the bar are shown for all three sit-
uations in Figure 3.16 (left). The grey lines represent bending to a radius of 1.0,
the black lines show the stress profiles when the bar is bent further, to a radius of
0.8. R/t equals 100, and the material is IF-steel. In the case of pure bending, the
elastic band becomes slightly narrower as bending increases. In the case of fully
plastic deformation, only a very small change occurs (due to the hardening in the
material). However, in the intermediate case, the stress profile becomes different
because the neutral line shifts.

The unbending moment, which causes springback, is calculated by integrating the
function σ(z)z over the thickness, as shown in Figure 3.16. This function σ(z)z is
shown in the graphs on the right, again for bending radii of 1.0 (grey) and 0.8 (black).
The unbending moment, and therefore springback, only changes significantly in the
intermediate case, due to the shifting of the neutral axis. The unbending moment
becomes larger by bending further, so springback becomes larger as well and a
compensation factor higher than 1.0 can be used to great effect. The location of the
neutral axis is dependent on the tension strain in the following way(see Equation
(3.8)):

dz0
dR

= −εt (3.17)

This means that the shift of the neutral axis increases when the tension strain in-
creases, so the change in springback increases with increasing tension strain as well.
This explains the increasing compensation factor in Figure 3.14 in the intermedi-
ate case. When the tension strain is so large that the neutral axis is not present
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Figure 3.16: Stress profiles (left) and the springback moment integrand (right). IF-
Steel, R/t = 100
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Figure 3.17: Optimal compensation factor vs. target radius). t = 0.01, IF-Steel

anymore, only plastic deformation takes place and the optimal compensation factor
approaches 1.0.

It is also interesting to know the relationship between the tool geometry and the
compensation factor ā. In Figure 3.17, ā is shown with varying values of rtarget/t. In
industrial parts, the curvature differs strongly over the geometry. The model shows
that the shallower the geometry is, the lower the compensation factor becomes.

As this simple example has shown, the compensation factor depends on the stress
state in the bar, as well as the geometry that is formed. In an industrial forming
process, both the geometry and stress state are very different at various places in
the product, and due to hardening, even the material behavior will start to vary.
Hence, a different compensation is required at different locations in the part. This
can only be achieved with the iterative variant of DA. Still, the one-step DA variant
should not be dismissed. Even though the single compensation factor makes the
results less accurate in industrial applications (as shown in [47] and the following
section), it is sometimes the only way to carry out springback compensation, for
example when geometrical measurements of prototype products [52] instead of FE
simulations provide the springback field.

Iterative application of DA
The iterative variant will now be demonstrated for the stretch-bending process. Fig-
ure 3.18 shows the shape error during the subsequent iterations with the iterative
DA process for various tension forces. Note that the shape error was normalized by
dividing it by the shape error using the original tools (this is done because spring-
back is different for different tension loads). It can be concluded that in all cases, the
iterative implementation of DA will quickly converge to the correct forming-radius,
irrespective of the tension force T , however T does influence the convergence rate of
the method.

As the tension force T increases, the convergence becomes slower, until the load
is so high that the bar is fully plastically deformed (for IF-steel: T̄ > 1.32), then
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Figure 3.18: Convergence of iterative DA with various tension strains, R/t = 100,
IF-Steel

Figure 3.19: Rate of convergence for varying tension force, IF-Steel, R/t = 100

convergence is very fast again. This is shown more clearly in Figure 3.19, which
shows the rate of convergence in the i-th iteration:

µ =
ri+1 − rtarget
ri − rtarget

(3.18)

When the DA process is applied to the analytical model, µ is approximately con-
stant in each iteration. For large values of T , µ approaches zero, which means that
the speed of convergence is very high. Note that the graph is similar to graph 3.14.
In the iterative DA process, the tools are compensated with a factor of 1.0 in each
iteration, so when the optimal ‘one-step’ compensation factor is close to one, very
fast convergence is obtained. When an elastic band is present in the bar the com-
pensation becomes slower as the process is more non-linear.

The conclusion is that when the bar is fully plastically deformed: Not only does
the compensation become very fast, springback is also reduced drastically. From an
industrial standpoint, this is important for shallowly curved objects such as a car
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roof, where there is relatively little plastic deformation in the product area. The
amount of springback increases, and it becomes harder to compensate.

Conclusions for the analytical model
The analytical stretch-bending model provides insight in springback behavior and
in how to compensate most effectively. It has been shown that the compensation
depends on geometry, material and process parameters:

• The compensation factor is higher for strongly curved geometries.

• The compensation factor depends strongly on the in-plane tension in the bar.

• The compensation factor is higher for higher strength steels.

• No single correct global compensation factor can be provided for complex blank
geometries.

• The convergence speed of the DA method also depends on material, pro-
cess and geometrical parameters, however, quick convergence is reached for
all cases.

• The basic assumption for iterative application of SF is not correct.

• The iterative DA method leads to better tool shapes than the SF method.

• The SF method is sensitive to the position of fixation points due to high
compressive stresses in the blank, and due to buckling effects, calculation of
the compensated geometry is not possible in most cases.

3.4 Springback compensation for industrial processes

The application of the DA algorithm in three dimensions and in the context of real
industrial forming processes, rather than academic problems, requires many addi-
tional operations, which are all related to tool design requirements. The DA principle
applies to the forming shape of the product only, and it needs to be transferred to
the tools with great care. As pointed out in chapter 1, the deep drawing process
can be very sensitive to small changes in the tool geometry. When drastic changes
are applied to the tools, the behavior of the process may change dramatically after
compensation, and the expected improvement in geometrical accuracy will not be
achieved.

The transfer of the compensation of the forming shape to the forming tools is the
subject of the following section. The smoothness of the tool surfaces needs to be
maintained. This is not the only requirement, the gap-width between the tools has a
great influence on the draw-in of the blank, as was discussed in the previous chapter.
It is also beneficial to keep the blankholder area unchanged to retain the properties
of the forming process. When the product features steep-angled walls, undercuts
are likely to occur in the compensated tools.
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3.4.1 Retaining tool surface quality

The main DA principle was defined in Eq. (3.5) as:

~cj+1 = ~cj − 1 · (~sj − ~d) (3.19)

The compensation field ~Φj = −1·(~sj−~d) is only known on the nodes ~di of the desired
mesh ~d. The topology of the tool meshes ~cj is different from the product mesh and
the tool geometries are larger, therefore interpolation as well as extrapolation of the
compensation are required. Therefore, ~Φj is approximated by a continuous function
Ψj(~x). This has an additional advantage: because Ψj(~x) is a smooth function, no
abrupt changes are applied to the tool geometry. For this reason this method is now
referred to as the Smooth Displacement Adjustment (SDA) method [44].

For a geometrical point ~ci on the tool surface the shape modification is defined by:

~cj+1
i = ~cji + Ψj(~cji ) (3.20)

This geometrical point can be an FE tool-node, but the function can also be applied
in a CAD context, as will be shown in the next chapter. For clarity, the iteration
variable j will be omitted in the following equations, unless necessary.

The approximation function Ψ(~x) is defined as a summation of kmax basis functions
θk(~x)

Ψ(~x) =
kmax∑

k=1

~akθk(~x) = aθ(~x) (3.21)

Different bases can be chosen for θk(~x). A set of polynomials is the most straight-
forward choice.

θk(~x) = xfkygkzhk (3.22)

Each θk can be defined by setting the factors fk, gk and hk, an example set could
be:

θ(~x) =
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(3.23)

The distance of Ψ to the data points of Φ is minimized in an L2-sense.

min
~a
‖Ψ(~x)−Φ‖ (3.24)

The vector a is the solution to the minimization problem. Because the solution of
the x, y and z-components is independent, the problem is split into its components

Ψ(~x) =





Ψx(~x)
Ψy(~x)
Ψz(~x)



 (3.25)
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Note that x, y and z are used as indices only. The calculation of the Ψx(~x) is shown
here.

Ψx(~x) =
∑

k

ax
kθk(~x) (3.26)

A potential for the distance of the function to the data-cloud consisting of n points
is defined as

Π =
1

2

n∑

i=0

(Ψx(dx
i )− Φx(dx

i ))2∆Ai (3.27)

This potential Π becomes minimal when the parameter set ax
l , 0 < l < kmax is

optimal:

dΠ

dax
l

=

n∑

i=0

(Ψx(dx
i )−Φx(dx

i ))
dΨx(dx

i )

dax
l

∆Ai = 0 (3.28)

This can be rewritten as:

dΠ

dax
l

=

n∑

i=0

((
∑

k

ax
kθk(d

x
i )

)

− Φx(dx
i )

)

θl(d
x
i )∆Ai = 0 (3.29)

This is a set of equations for each l ∈ 0 < l < kmax and it can be written as a
matrix-equation, and solved by inversion:

Max = cx ⇔ ax = M−1cx (3.30)

with

ax = [ax
0 , a

x
1 , . . . , a

x
kmax

]T (3.31)

and the components mkl of matrix M

mkl =

n∑

i=1

θk(~di)θl(~di)∆Ai (3.32)

and the components cxl of vector cx

cxl =

n∑

i=1

Φx(~di)θl(~di)∆Ai (3.33)

The fitting procedure is weighted, using the Voronoi surface ∆Ai, as shown in Figure
3.20.

A more flexible, yet smooth, set of basis functions is the B-spline volume. The
approximation function is then defined as:

Ψ(~x) =
∑

i

∑

j

∑

k

Ni,p(x)Nj,p(y)Nk,p(z)aijk (3.34)

with aijk a three dimensional array with so-called ‘control points’, that define the
shape of the volume. Ni,p is the i-th B-spline basis function of degree p. The
recurrence formula is most widely used to define the basis function:

Ni,0(u) =

{
1 if ui ≤ u < ui+1

0 if otherwise
(3.35)

69



Figure 3.20: The Voronoi surface around a node

Figure 3.21: Approximation error for a quadratic (left) and cubic (right) spline
function

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u) (3.36)

Generally, the more control points are being used, the more flexible the function be-
comes, but its behavior might also become unpredictable. The least squares fitting
of this function is principally identical but requires a more complex implementation.
For more in-depth information on spline mathematics the reader is referred to the
standard works [53] and [22], as well as the next chapter.

Both polynomial and spline approximation functions were tested on springback data
of industrial parts. Due to increased flexibility, easily adaptable parameters and
strict linear independence of its basis-functions, the spline function is much pre-
ferred and will be used in all industrial examples. The results are shown in Figure
3.21 for the trunk lid panel. For the left figure, a B-Spline volume with 3x3x3
quadratic sections is used, in the right figure 4x4x4 cubic sections. Shown is the
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Figure 3.22: Extrapolation problem for the B-spline approximation function

distance between the springback geometry and the approximated springback geom-
etry. Note that even with the cubic function, the error is considerable, at 10% of
the maximum springback displacement. It will be shown in the next section that
approximation accuracy is always a trade-off against the stability of the function in
extrapolation.

3.4.2 Retaining the blankholder surface

The added flexibility of the B-spline volume function comes at a cost. The fully
3-dimensional function is fitted to a data set, defined on the surface of the de-
sired geometry ~d only, and could therefore be regarded as under-defined. In the
deep drawing tools, the so-called die-addendum geometry is added, as well as the
blankholder surface. These geometries are not part of the product geometry, they
are designed by the process design engineer to achieve a beneficial blank draw-in and
stretching of the blank. Because the approximation function is not supported by
data points in this area, its behavior is not predictable. Figure 3.22 shows that this
is a serious problem. The left die is the original tool, the right die is compensated
with an compensation factor of 1.3 and a 3x125-parameter approximation function.
Heavy changes are applied to these areas, which cause problems in the tool produc-
tion and invoke undesirable changes in the forming process.

Two solutions were considered:

• Additional constraints on the approximation function

• Multiplication the approximation function with a cutoff function

Additional boundary conditions can help to tame the behavior of the approximation
function in the extrapolation area. A generally applied strategy is to limit the gra-
dient of the function. The disadvantage of this method is that the approximation
properties of the function are impaired over the entire geometry.
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Figure 3.23: Principle of the cutoff function

A cutoff function is a function that smoothly changes from one to zero outside the
product area of the blank. When the approximation function is multiplied by the
cutoff function, it will also smoothly change to zero. It is quite cumbersome to
define such a function, however, with the implementation that is proposed here, the
approximation properties remain completely unchanged in the product area. There-
fore, this method was chosen and implemented.

The cutoff function is based on two user defined (mesh) polygons, the product-edge
and the addendum-edge. If the tool-node ~ci is located inside the product edge, the
cutoff value is 1.0. If it is outside the addendum-edge, the value becomes 0.0. Be-
tween the two curves the function value drops smoothly.

The implementation is clarified in Figure 3.23. All procedures are carried out in
the xy-plane, with the z-axis as drawing direction. Firstly, the product-edge is
approximated with a convex B-spline curve. The tool-point ~ci, for which a cutoff-
value ρ(~ci) is to be calculated, is projected onto the convex curve. The projection
line intersects the product-edge and the addendum-edge. g is the distance between
the edges, and gt the distance from ~ci to the product edge. The cutoff value is now
calculated using the polynomial that is shown in Figure 3.23:

ρ = 2

(
gt

g

)3

− 3

(
gt

g

)2

+ 1 (3.37)

The convex approximation curve is required to make sure that the resulting cutoff
function does not self-intersect: no curve normal will intersect another curve normal.
Figure 3.24 shows the cutoff function for a trunk-lid die. It remains smooth even
when the product edge is not convex (as indicated by the circle). The final result is
that now the compensation smoothly transforms to zero in the die-addendum area,
as shown in Figure 3.25.
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Figure 3.24: The resulting cutoff function

Figure 3.25: Smoothly compensated die
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Figure 3.26: Master-slave compensation

Figure 3.27: Principle of the undercut-avoiding algorithm

3.4.3 Gap-width preservation and undercut avoidance

The approximation function is fitted to the data of the desired geometry, which is
a surface. However, the function is defined in the entire 3D space. Because the
approximation function is so flexible, the gradient in the direction normal to the
blank becomes considerable. This means that the shape modification for the die
and the blankholder varies and the gap-width between those tools is changed after
compensation. This change in gap-width can amount more than 30% of the original
gap-width so it has a significant influence on the blank draw-in, so it should be
avoided.

A so-called master-slave compensation strategy was developed for tool meshes. The
idea is clarified schematically in Figure 3.26. One of the tools is declared as the
master-tool, and it is compensated as previously described. The nodes of the slave-
tool follow the shape change of the master-tool. A slave node ~si is projected onto
an element of the master-tool. The barycentric coordinates of the projection point
are calculated using the (unmodified) master-nodes ~mi and ~mi+1. The projection
point is now retrieved on the compensated master-element and the compensated
slave-node is constructed by using the gap-width g.

Another issue is the possibility of undercuts in the compensated geometry. In some
cases the angle of the tool walls exceeds 90 degrees after compensation, making
the compensated tool unusable. The undercut-avoidance algorithm carries out the
compensation gradually until an element reaches the maximum admissible angle, as
shown in Figure 3.27. The element is then ‘frozen in’, after which the compensation
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Figure 3.28: Avoiding undercuts: Example.

continues for the other elements until another element reaches the maximum angle.
This element is also frozen in. This way, the algorithm continues step by step until
the compensation has been completed. The figure also shows that this algorithm
might produce kinks in the tool geometry. For this reason, a complex smoothing
algorithm is included to retain the tool-surface quality. Figure 3.28 below shows
the results of a heavy die-compensation without and with the undercut-avoidance
algorithm.

3.4.4 Implementation

The SDA algorithm was implemented in C++ to work in combination with the
commercial PAM-STAMP software. The SDA method and all previously mentioned
additional algorithms can be used for any FE forming simulation software, however,
some script-programming is required for the SDA software to automatically start,
monitor and evaluate simulations.

When blank mesh refinement is used in the forming simulation, a problem occurs. In
each compensation iteration, the forming tools are changed. This causes slight dif-
ferences in the mesh refinement and as a result, the actual springback mesh ~sj is not
topologically identical to the desired geometry ~d anymore. While refinement could
be switched off, the same problem occurs during a trimming simulation, where new
nodes are added during the splitting of border elements. Therefore, a derefinement
algorithm was implemented to remove the refined nodes to solve this incompatibility,
as shown in Figure 3.29.

3.5 Examples

3.5.1 Process 1: Free forming

The first process is the free forming of a thick strip of metal. Free forming means that
no blankholder is involved during forming. The product, made by Volkswagen AG,
forms the backbone of a wheel suspension part. The blank material is DP-500 steel,
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(a) original mesh (b) derefined mesh

Figure 3.29: Derefining the blank mesh

Figure 3.30: The strip forming process in PAM-STAMP (left) and springback (right)

with a sheet thickness of 3.5mm. The process has been modeled in PAM-STAMP,
using an explicit solver during forming and an implicit solver for springback. The
forming tool geometries and the springback deformation are shown in Figure 3.30.
The maximum shape deviation amounts 3.3mm.

The free forming process was compensated with both the one-step and iterative
methods. The result of the one-step compensation can be found in Figure 3.31 for
various compensation factors. The mean shape deviation for all nodes is plotted, as
well as the maximum shape deviation. The black arrows indicate the best compen-
sation factor is between 0.65 and 0.69 with a reduction of 72 and 80% for the mean
and maximum shape deviation. Realistically, at least 5 FE simulations are required
to find this optimum compensation factor. Iterative compensation outperforms the
one-step method after the third iteration already, as Figure 3.32 shows. The mean
and maximum shape error are reduced by 94 and 96%.

The reason for the improved performance is that the compensation starts to vary over
the part during iterative compensation. In one-step compensation the compensation
factor a is the factor between the springback displacement and the compensation
displacement. This can be generalized to a ‘local compensation factor’ ai in iter-
ation j, comparing the actual amount of compensation with the initial amount of
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Figure 3.31: Results of one-step springback compensation for process 1

Figure 3.32: Results of iterative springback compensation for process 1
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Figure 3.33: Local compensation factor on the strip-punch

Figure 3.34: The NUMISHEET 2005 benchmark #1 process

springback:

ai =
actual compensation

initial springback
=
|~cji −

~di|

|~s0i −
~di|

(3.38)

This is visualized in Figure 3.33. Looking at the image, it becomes clear that when
the local compensation factor varies between 0.5 and 1.5, no one-step compensation
factor can be defined that achieves the same accuracy.

3.5.2 Process 2: Inner panel drawing

This product, an inner trunk lid panel, was used as a benchmark process at the
2005 Numisheet Conference. It is formed in two stages; a deep drawing stage and
a trimming stage. The FE meshes of the tools and the pre-bent blank as well as
the trimming operation are shown in Figures 3.34 and 3.35. The blank is made of
ZStE180 steel and has a thickness of 0.8 mm.

After trimming, the FE node at the location of the red point in Figure 3.35 is fixed
in all three directions and rotations, and the blank is allowed to spring back freely.
The resulting deformation is shown in Figure 3.36.

As pointed out previously: tool smoothness is of vital importance for the compen-
sation. Surface smoothness can be verified by inspecting the light reflection on the
geometry. This can be carried out on real geometries, but also on FE meshes or
CAD data by using specialized software. Figure 3.37 shows the results of such an
analysis. As far as the accuracy of FE meshes can reveal, the compensation did not
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Figure 3.35: Trimming the NUMISHEET panel

Figure 3.36: Springback displacement

impair the surface smoothness of the tool.

Figure 3.38 shows the shape error for the trunk lid panel during each iteration j.
Interestingly, the best result is already achieved in the third or fourth iteration, a
further iteration decreases the accuracy. Figure 3.39 again shows the shape deviation
for the original process and the compensated tools (j = 7), but now the visualization
range is set in the order of magnitude of the sheet thickness. This reveals that the
shape deviation has decreased significantly below sheet thickness in the center of the
product. However, the flanges of the product show an unsatisfactory result. Three
possible explanations are:

• Compressive stresses in the flange result in long wavelength wrinkles that can-
not be compensated effectively, because their exact location is physically un-
stable: the wrinkle ‘wanders’ along the flange when the process is changed by
the compensation. The finite accuracy of the compensation is due to process
changes

• Due to the derefining process, the shape deviation data in the flange is lost.

• The error of the approximation function becomes too large

Hypothesis 1
The springback displacement in the flange changes less than 10% during the consec-
utive iterations. Therefore, the cause of the problems cannot be the instable nature

79



Figure 3.37: Tool light reflection before (left) and after compensation (right). Image
courtesy of ICEM software

Figure 3.38: Results of the springback compensation for process 2
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Figure 3.39: Shape deviation with original tools (left) and with optimized tools
(right)

Figure 3.40: Loss of edge details due to derefining

of large wrinkles.

Hypothesis 2
The second hypothesis is confirmed by Figure 3.40. Almost all nodes in the flange
are removed during derefining, leaving the SDA algorithm too little data for accu-
rate compensation. This can easily be resolved by using a distance field instead of
the shape deviation field and derefining algorithm after the first 2 or 3 iterations.

Hypothesis 3
To verify the third hypothesis, the error of the approximation function needs to be
compared to the geometrical error that remains in the compensated product. The
mean shape error is a more objective measure for the quality of the compensation.
Here, a surface-weighted quadratic mean error is calculated in the current iteration
and for the original forming process:

εmean =
actual shape deviation

initial shape deviation
=

∑

i

|~di − ~s
j
i |

2∆Ai

∑

i

|~di − ~s
0
i |

2∆Ai

(3.39)

The line ‘Shape Deviation-1’ in Figure 3.41 also reveals that the best results are
obtained in the fourth iteration. The reason is that the approximation error, shown
in Figure 3.42 becomes large with respect to the actual shape deviation. The ap-
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Figure 3.41: Shape error results for the NUMISHEET benchmark part

proximation error of the SDA method can be calculated as follows:

εapp =
actual approximation error

actual shape deviation
=

∑

i

|(~di − ~s
j
i )− ψ

j
i |

2∆Ai

∑

i

|~di − ~s
j
i |

2∆Ai

(3.40)

With decreasing shape error magnitude, the remaining error becomes more local
and the global approximation function will have difficulties capturing such detailed
shape errors. Oscillations will start to occur and the results will get worse. The
limitations for the compensation accuracy are therefore a combination of hypothesis
one and three.

Increasing the number of parameters to 7x7x7x3 (1029) improves the results, as the
lines ‘Shape Deviation-2’ and ‘Approximation Error-2’ show. A reduction in shape
error of more than 80% is achieved. However, a further increase in the number of
parameters in the approximation function leads to numerical problems in solving the
fitting problem and to extrapolation problems in the compensated die-addendum,
even when the cutoff function is used.

Iterative versus one-step compensation
Just like the free-bending problem of process 1, the compensation also varies over
the geometry in the iterative procedure, as Figure 3.43 shows. In the left picture
the norm of the (initial) springback displacement ‖~s0i −

~di‖ is shown, and it differs

from the norm of the compensation ‖~c6i −
~di‖, in the right picture.

In order to verify whether the iterative procedure leads to better results than one-
step compensation, the methods are compared again. An optimal compensation
factor needs to be found first. Using the distribution of local compensation factors
ai from the iterative results a weighted mean value is calculated as follows:

amean =

∑

i

ai ·∆Ai|~si − ~di|

∑

i

∆Ai|~si − ~di|
(3.41)
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Figure 3.42: Approximation error for the NUMISHEET benchmark part

Figure 3.43: Springback (left) versus compensation displacement (right) after 6
iterations
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Figure 3.44: Shape deviation after iterative (left) and one-step SDA (right) com-
pensation

The local compensation factor ai is weighted with the nodal Voronoi area ∆Ai, as
introduced in Figure 3.20, and the norm of the springback displacement. The use
of this is to filter out the nodes with small or zero springback displacement: Due
to the approximation error, the compensation displacement can become very large
compared to the springback displacement, leading to erroneous local compensation
factor values.

Equation 3.41 resulted in a mean compensation factor of 1.12 or 112%. Surprisingly,
the result of the compensation is slightly better than for the iterative process, as
can be concluded from Figure 3.44. The reason is mainly the aforementioned os-
cillations of the approximation function in the flange area. Note that an optimal
compensation factor is generally not known, and some form of optimization process
has to be carried out to obtain the best value. Again, the industrial rule of thumb
of 130% is not of much use. For the iterative procedure this is not necessary.

3.5.3 Process 3: Outer panel drawing

Finally, the forming process of a flexible outer body panel was investigated. The
product was an outer front fender part by Volkswagen. The forming tools are shown
in Figure 3.45. Again, the forming process consisted of a forming stage and a
trimming stage. Note that the process settings and material are fictive. In the sim-
ulation, ST14 with a thickness of 1mm was used as blank material. The springback
deformation was shown at the beginning of the chapter in Figure 3.1.

For process 3, the front fender, the advantage of the iterative procedure is evident,
as can be seen in Figure 3.46. The optimal compensation factor was determined by
a standard optimization technique and amounted 0.78, an unexpectedly low value.
The reason for this is the unusual twisting of the part in springback. Therefore,
the compensated tools have a smaller drawing-depth than the original tools. As
a consequence, the springback of the part has decreased after compensation and a
compensation factor below one has to be chosen. In the iterative variant, the optimal
solution is found automatically. The accuracy of the one-step tools is surpassed in
the third iteration already and the optimal shape is found in the 9th iteration. This
tool-shape leads to a significantly lower shape error, reinstating the recommendation
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Figure 3.45: The forming process for the front fender

Figure 3.46: Shape deviation after iterative (left) and one-step compensation (right)

for the iterative procedure.

Unexpectedly large values (2.5-5.0) were found for the local compensation factor.
The explanation is that during the iterations the blank had shifted considerably in
tangential direction due to changes in the draw-in. Therefore, the compensation
vectors were also almost tangential to the blank surface [47]. This error cannot be
compensated effectively. Therefore, in the implementation of the SDA algorithm, a
normal distance based compensation is applied in the final iterations.

The front fender is a relatively flexible part, and therefore the forces required to push
the product back into the desired shape, were calculated as well. For this calcula-
tion, the product was clamped in the middle and pushed back at three significant
locations. Note that these points were not taken from the official measurement plan,
which is much more complex. The push-back forces before and after compensation
are shown in Figure 3.47. It becomes clear that, because the forces exceed 30N,
compensation is required. After compensation, all push-back forces are within the
tolerance.

3.6 Conclusion

For all industrial processes, numerical springback compensation has brought a sig-
nificant improvement in geometrical accuracy, while retaining the usability of the
tools. Even when the quality of the results may not lead to an exact first-time-
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Figure 3.47: Push-back forces on the fender panel

right process on the real press, the improvement will help saving time in the tool
development process.

• In all cases the use of the iterative variant of the Smooth Displacement Ad-
justment algorithm is preferred over the one-step procedure. Not only is the
amount of required simulations lower, the effectiveness is also higher in most
cases.

• The use of the displacement field is preferable for the first iterations, in con-
secutive iterations a distance calculation leads to better results.

• The approximation function limits the accuracy of the compensation. How-
ever, this limitation is unavoidable when the tool smoothness and usability
have to be maintained.
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Glossary

ε strain
θ vector of shape functions
µ rate of convergence (inverse)
~ξ distance field
Π potential
ρ cutoff function
σ stress
Φ approximation function
a compensation factor
ai local compensation factor
∆A Voronoi area
~a shape function parameters
~c compensated forming shape
c fitting RHS
~d desired shape
E Young’s modulus
EI bending stiffness (beam theory)
g distance to edge (cutoff function)
j iteration
K Holomon material parameter
l length
M bending moment
M fitting matrix
n Holomon material parameter
Ni,p B-spline basis function
r radius of bar after springback
R forming radius
R̄ desired radius
~s springback shape
t thickness
T tension force
u displacement at end of bar
w width
z coordinate in bar thickness direction
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Chapter 4

Modification of tool CAD

geometries

4.1 Introduction

Computer-Aided Design (CAD) forms the backbone of today’s product development
processes. Forming tools are designed with a combination of 3D solid and surface
modeling. The product area of the forming tools is directly derived from the part’s
CAD geometry. In order to ensure the geometrical quality and smoothness of the
stamped part, the geometrical tolerances of the initial design are inherited by the
tool design. For outer body panels, even the change in curvature, the second geo-
metrical derivative, needs to be taken into account during the design.

When the tools need to be modified by the tooling CAD department for springback
compensation, it is a challenge to maintain the tight geometrical tolerances. Even
when the compensation is subtle, the behavior of the surfaces might be unpredictable
during modification, and there is no established way to retain smoothness constraints
between surfaces in today’s CAD systems. Manual modification of the tool surfaces
for springback compensation is therefore a demanding and time-consuming task. In
some cases, the accuracy of the compensation is compromised when subtle or de-
tailed shape changes cannot be applied to the tool geometry correctly.

In the previous chapter, a compensation algorithm was developed for tool-meshes,
using a continuous compensation function. The goal of the current chapter is to
find a way to automatically apply this function to CAD geometries as well. Firstly,
the different types of CAD geometries are discussed in section 4.2. Depending on
the application of the product, the geometry is modeled as a so-called Class A
or B geometry and different compensation strategies are required. Such a CAD
compensation strategy has been developed and it is introduced in section 4.3. The
basic principle will be explained, as well as the addition of simple and complex
boundary conditions. The method is demonstrated for various academic problems.
As the method is treated mainly from a mathematical point of view, the final section
shows the possibilities for further exploration and implementation in an industrial
context.
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Figure 4.1: Non-local control over a Bézier curve

4.2 Surface qualification and quality

Before the modification strategy can be introduced, two questions need to be an-
swered:

• What is a high-quality geometry?

• How are CAD geometries created?

The two main criteria for a CAD geometry are the correct representation of the ob-
ject and the editability of the geometry. One would expect the representation of the
geometry to be always completely exact since it exists in a ‘perfect’ mathematical
world. In practice, the shape of the surface and the transition from one surface into
another do not exactly satisfy desired conditions: They are fulfilled within a certain
tolerance only.

The reason for this is the second requirement: editability. To exactly apply to all
boundary conditions, extremely flexible surfaces would be required. With increas-
ing flexibility, the surface functions tend to become unstable, similar to the B-spline
volume used in the SDA algorithm. This means that while the boundary conditions
are satisfied, the surface may exhibit unwanted bulges. In manual modifications, the
surface also becomes very sensitive to small parameter changes, making it hard to
manipulate the shape of the surface. As a simple example, a parametric curve, based
on the same (Bézier) principle is modified in Figure 4.1. Even though a parameter
is changed on the left side of the curve, the shape of the entire curve changes: The
effect of parameter changes is non-local.

For various types of products the tolerances and editability requirements are different
as well, leading to specific challenges during shape modification. In the automotive
industry, product geometries are therefore differentiated in two categories: Class A
and Class B geometries. Note that in this chapter, the focus is on surface modeling,
as this is the most frequently used method in die-design.

4.2.1 Class A surfaces

Products that have aesthetic requirements, for example body and interior panels, are
modeled with class A geometries. The term Class A means that unwanted changes
in curvature are not allowed: They cause erroneous light reflection lines that distort
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Figure 4.2: Unwanted kink in reflection line after surface modifications

the visual perception of the painted product. These reflection lines, and therefore
the C0, and especially C1 and C2 boundary conditions, are the main creative objects
for a car-designer. If the geometry is C2 continuous everywhere, it is regarded as
smooth. A C2 discontinuity will produce a so-called ‘feature line’, a C1 discontinuity
a sharp kink. The human eye is extremely sensitive to surface smoothness changes:
Measurement systems must have an accuracy in the order of 10 µm to detect visual
defects [5]. In Figure 4.2, a small error was made in the C1 continuity between the
surfaces. The arrows clearly show the discontinuity in the (computer generated)
light reflection pattern [28, 4].

In order to develop a CAD model for the outer body panels, a clay model is man-
ually sculpted by the designers first. When the desired shape has been obtained,
the clay model is measured by making a 3D scan, resulting in a point cloud. Then
so-called free-form surfaces are fitted manually onto the point-cloud. Automatic
surface fitting algorithms do exist, however, due to the complexity of the geometry
and the instability of the surface functions the results are generally not satisfactory.
Even manually improving the resulting surfaces can be problematic because of the
large amount and suboptimal parametrization of the fitted surfaces [50]. Instead, a
much coarser fitting is done. The resulting surfaces are sufficiently manageable to
be manually reshaped by specialist designers. During that process, these specialists
increase surface complexity and the topology of the geometry when required. As
will be shown in the following sections, the shape of freeform surfaces is defined by
manipulating the so-called control-points in cartesian space.

Compensating tool geometries based on Class A surfaces
Class A surfaces form the basis for the design of the forming tools. This means that
the strict tolerances for the part are transferred to the tool, and that these tolerances
need to be held when the tool is compensated. As the tool surface follows changes
in the control points, an intuitive solution would be to simply compensate the loca-
tion of these points with the SDA method. The problem here is, that the control
points are generally not located on the surface itself (as shown for the curve in Fig-
ure 4.1). Depending on the surface basis-functions, they can be far away. In the
previous chapter, it was shown that the compensation function becomes inaccurate
at a larger distance from the tool surface. More importantly, the surface behavior
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can be unpredictable with respect to control-point changes, leading to inaccurate
results and undesirable transition errors between surfaces. Therefore another com-
pensation principle has been developed, taking into account these transitions. This
will be explained in section 4.3.

4.2.2 Class B surfaces

Contrary to aesthetic parts, the creation and modification of functional products
is mainly carried out by using feature-based CAD. Instead of manually ‘sculpting’
the free-form surfaces with control-points, geometries are created by using simple
sketches, which are then applied in procedures that resemble real production tech-
niques, like cutting or extruding. This is a powerful way of modeling and it allows
easy changes in constructive parameters, such as the dimensions of a drilled hole.
The relationships between the parameters of the geometry remain and the surfaces
are automatically regenerated after the change. Therefore, the geometry is charac-
terized as ‘intelligent’ [48].

Compensating tool geometries based on Class B surfaces
For class B geometries, curvature boundary conditions do not play an important role
and the shape of the geometry is in most cases more straightforward. This makes
the compensation of these geometries easier. Two strategies can be applied. The
simplest way is to convert all features into free-form surfaces. These surfaces can
then be modified in the same way as class A geometries. The major disadvantage of
this method is that the geometry’s intelligence is lost. Also, handling the converted
geometry is not a trivial problem. Firstly, continuity boundary conditions between
the generated surfaces have to be defined or deducted. Secondly, todays converter
algorithms tend to produce many trimmed surfaces. These are surface partitions
that are mathematically easy to create, but very hard to handle afterwards. This
will be discussed in greater detail in the following sections.

Another way is to try and compensate the structure while retaining the feature def-
inition. This limits the accuracy of the compensation because only a limited set of
geometries can be generated with the model-parameters. For example: a circular
hole in the part may become oval due to the compensation. However, when the
hole was modeled as a circular feature, it will be restricted to remain circular. The
geometrical limitations and the calculation difficulties are so large and unlikely to
be solved, that this system was not investigated further.

Therefore, intelligent CAD geometries will be converted into standard free-form de-
scriptions, as proposed earlier. To cater for the difficult structure of these converted
geometries a strong focus will be on the compensation of the ‘trimmed surfaces’ as
well.

4.3 Global surface modification algorithms

The springback compensation of tool surfaces is an application with specific require-
ments. The shape modifications are global and not very big. However, the accuracy
needs to be very high and the transitions between the surfaces must be taken into
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consideration carefully. In addition, the compensation must be carried out auto-
matically. In contrast, most global modification algorithms, such as the Free Form
Deformation (FFD) method [65, 16, 66] are intended for manual modification. An-
other interesting way to modify freeform surfaces is presented in [50]. Here, complex
surface geometries are defined by a set of curves and boundary conditions which can
be changed easily, but again, this was developed for manual modifications only.

Surface fitting techniques, also known as Reverse Engineering (RE) are the basis
of the surface compensation algorithm that was developed. Instead of using the
method for initial surface fitting [63], the surfaces are modified using surface re-
fitting. Because a (correct) reference tool-geometry is already present as a starting
point, curvature constraints between surfaces that are not usually applied in fitting
procedures, can be taken into account.

4.3.1 Surface compensation principle

A new method for springback compensation has been developed for FE meshes, as
shown in the previous chapter. The method is to apply a 3D vector function Ψ(~x)
to the location of each node ~ci in the mesh. As a result, the node is moved to a new
location ~c′i.

~c′i = ~ci + Ψ(~ci) 0 < i < n (4.1)

Here, n is the number of nodes. A point on a surface can be described with a
continuous function ~S with two location parameters. In CAD mathematics u ∈ [0, 1]
and v ∈ [0, 1] are generally used. The shape of the surface is controlled by a set of
shape parameters ~p = [~p1, ~p2, ..., ~pq]

T . The shape parameters are defined as points
in Cartesian space and are generally called control points.

S(u, v) = S(~p1, ~p2, ..., ~pq , u, v) = S(~p, u, v) (4.2)

The challenge is to apply the compensation function to the entire surface. As a first
approach, only one so-called sampling point ~di with parameters ui and vi on the
surface is taken into consideration.

~di(ui, vi) = S(~p, ui, vi) (4.3)

Two initial requirements are:

1. The mathematical structure of the initial and compensated surfaces is identi-
cal. This means that the surface basis functions remain unchanged.

2. The compensation function maps the initial sampling point ~di(ui, vi) to the
point with identical parameters ui and vi on the modified surface.

The main idea is to find an optimal set of control points ~p′ for the compensated
surface, so that the point ~di is compensated accurately.

S(~p′) = ~di + Ψ(~di) = ~d′i
⇔

S(~p′, ui, vi) ≃ S(~p, ui, vi) + Ψ(S(~p, ui, vi)) ∀ui, vi

(4.4)

The equation is presented visually in Figure 4.3. It is important to note its ap-
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Figure 4.3: Re-fitting principle

proximative nature: It is possible to find an optimal solution for ~p′ but this is not
necessarily exact because of the limited flexibility of the surface function ~S. Simi-
larly to the fitting of the compensation function, the control points can by found in
the following way:

min
~p′

(
1

2
|S(~p, ui, vi) + Ψ(S(~p, ui, vi))− S(~p′, ui, vi)|

2

)

(4.5)

The surface function S can be formulated as a linear combination of j basis functions
Ni(u, v), using the vector with control points ~p.

S(~p, ui, vi) =
∑

j

Nj(ui, vi)~pj = nT~p (4.6)

So, Equation (4.5) can be rewritten as

min
~p′

1

2
(nT ~p + Ψ(~di)− nT ~p′)2 (4.7)

The problem can be simplified as:

min
~p′

1

2
(~d′ − nT~p′)2 (4.8)

The problem can be solved by differentiating to ~p′, leading to:

(~d′ − nT~p′)T (−nT ) = ~0 (4.9)

−n~d′ + nnT ~p′ = ~0 (4.10)

with K = nnT and ~f = n~d′ this can be written more conveniently as:

K~p′ = ~f (4.11)

Note that, as the arrow indicates, ~p′ and ~q are vectors of (3D) points so Equation
(4.11) represents 3 (independent) equations. These equations can be solved if the
matrix K is positive definite. When only one sampling point on the surface is taken
into consideration, this will not be the case. Instead, the surface parameters need
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to be determined so that the geometrical error over the entire compensated surface
becomes minimal. This can be achieved by using a surface integral:

min
~p′

1

2

(∫

A

∣
∣S(~p, u, v) + Ψ(S(~p, u, v)) − S(~p′, u, v)

∣
∣ dA

)2

(4.12)

Before this equation can be solved, the proposed surface function (4.6) needs to be
defined. The Bezier surface [64] is the best-known parametric surface.

S(u, v) =

m∑

i=0

n∑

j=0

~pijBi,m(u)Bj,n(v) = bT (u)~Pb(v) (4.13)

Unlike the previously presented vector equation, ~P is a matrix with control points in
this equation and Bi,m is the i-th Bernstein Polynomial of degree m. The Bernstein
polynomials are defined as follows:

Bi,n(u) =
n!

i!(n − i)!
ui(1− u)n−i (4.14)

Instead of the Bernstein-polynomials, also the more complex B-spline or Non-Uniform
Rational B-Spline (NURBS) basis functions can be used. They allow more complex
shapes, but since the basic mathematical structure is identical to the Bezier-surface,
they are not taken into consideration in this chapter. In Equation (4.13), the control
points are organized in a matrix ~P and the basis functions in vectors b(u) and b(v).
For example, a quadratic by quadratic surface is defined by the following equation:

S(u, v) =





(1− u)2

2u(1 − u)
u2





T





~p00 . . . ~p0n
...

. . .
...

~pm0 . . . ~pmn










(1− v)2

2v(1 − v)
v2



 (4.15)

Even though this matrix equation is the clearest formulation, it is sometimes more
convenient to write the surface function as a vector dot-product, as proposed in
Equation (4.6). The following system of functions is equivalent:

S(u, v) =

m∑

i=0

n∑

j=0

~pijBi,m(u)Bj,n(v) =
∑

k

Nk(u, v)p̄k = n(u, v)~p (4.16)

Vector ~p contains the control points and n(u, v) the basis-functions, each consisting
of two Bernstein polynomials.

N







Nk(u, v) = Bi,m(u)Bj,n(v)
k = i · n+ j
k, n,m ∈ N

0 < k < n ·m
0 < j < n

(4.17)

As an example, this change of notation is shown for a linear by linear surface, shown
in Figure 4.4.
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Figure 4.4: A linear by linear Bezier surface

S(u, v) =

[
B1,2(u)
B2,2(u)

]T [
~p11 ~p12

~p21 ~p22

] [
B1,2(v)
B2,2(v)

]

= B1,2(u)~p11B1,2(v) +B1,2(u)~p12B2,2(v)
+B2,2(u)~p21B1,2(v) +B2,2(u)~p22B2,2(v)

=







B1,2(u)B1,2(v)
B1,2(u)B2,2(v)
B2,2(u)B1,2(v)
B2,2(u)B2,2(v)













~p11

~p12

~p21

~p22







= nT (u, v)~p

(4.18)

In the following part, Equation (4.12) is solved numerically, because a closed-form
solution cannot be found in the general case. Instead of just one sampling point ~d′

a matrix or grid of so-called sampling points ~D is chosen. The coordinates of the
sampling points are then modified with the compensation function Ψ, resulting in
a matrix ~D′, and the surface is refitted to the modified sampling points. It is most
convenient to choose a rectangular r × s grid of sampling points:

~D =






~d11 . . . ~d1s
...

. . .
...

~dr1 . . . ~drs




 (4.19)

An equispaced grid was chosen for u and v:

~D =






S(u = 0, v = 0) . . . S(1, 0)
...

. . .
...

S(0, 1) . . . S(1, 1)




 (4.20)

It is more convenient to order the sampling-points ~D and modified sampling points
~D′ in the vectors ~d and ~d′ with a length of t = r · s instead of the r × s matrices.

Equation (4.12) is now discretized for all t sampling points in the following way: A
vector ~p′ is sought that minimizes the function

1

2

(
t∑

k=1

∣
∣
∣~d′k − S(~p′, uk, vk)

∣
∣
∣∆Ak

)2

(4.21)
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with uk and vk as surface parameters for the k-th sampling point. This function is
a weighted summation of Equation (4.8). It is not easy to provide a straightforward
calculation for the weight ∆Ak, which should describe the area around each sampling
point ~dk, similar to the Voronoi-area around the nodes in the previous chapter.
Instead, it is assumed that the grid is equispaced, and ∆Ak can be set at the value
of 1 for all sampling points. Equation (4.21) is again rewritten in matrix-form:

K~p′ = ~f (4.22)

The (ij) K-matrix value is calculated as follows:

Kij =

t∑

k=0

Ni(uk, vk)Nj(uk, vk) (4.23)

The (i)-th f -vector value is calculated as follows:

~fi =

t∑

k=0

Ni(uk, vk)~d′k∆Ak (4.24)

For a more detailed introduction in fitting and RE problems, the reader is referred
to the standard work [42].

4.3.2 Transitions between surfaces

As discussed in the introduction, the continuity tolerances are important parameters
for forming tool surfaces. In this section it is shown how these transitions can be de-
fined mathematically, so that they can be included in the previously discussed frame-
work. Consider two Bezier surfaces S = bT (uS)~Pb(vS) and R = bT (uR)~Qb(vR).
Note that, for convenience, the matrix-equation is used here. In the simplest case, R
and S are connected C0 continuously. If the number of control points in v-direction
is identical the following equation can be solved:

S(1, vS) = R(0, vR)

bT (1)~Pb(v) = bT (0)~Qb(v) ∀v ∈ [0, 1]
(4.25)

With Equation (4.14) it can easily be shown that

Bi,m(0) =

{
1 if i = 0
0 if i > 0

(4.26)

and

Bi,m(1) =

{
1 if i = m
0 if i < m

(4.27)

Therefore, Equation (4.25) can be rewritten as follows (note that the Bernstein
polynomials in v-direction are identical when both surfaces have the same degree in
v direction and vS = vR on the edge):






0
...
1






T 




~p00 . . . ~p0n
...

. . .
...

~pm0 . . . ~pmn




 =






1
...
0






T 




~q00 . . . ~q0n
...

. . .
...

~qm0 . . . ~qmn




 (4.28)
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Figure 4.5: A C1 connection between 2 Bezier surfaces

leading to





~pm0
...

~pmn




 =






~q00
...
~q0n




 (4.29)

This simply means that the control points need to be identical on the shared edge of
the surfaces. These control points are shown in green in Figure 4.5. These control
points lie on the ‘zeroth’ row from the edge. For C1 continuity, the following equation
needs to be solved:

∂

∂u
S(uS , vS)

∣
∣
∣
∣
u=1

=
∂

∂u
R(uR, vR)

∣
∣
∣
∣
u=0

⇔ b′T (1)~Pb(vS) = b′T (0)~Qb(vR) (4.30)

This laborious calculation can be found in [22]. It can be shown that the so-called
r-th edge derivative depends only on the r-th row of control points. The surfaces
in Figure 4.5 are connected C1 continuously. This means that the control points
on the zeroth (pictured in green) and first (pictured in blue) rows of both surfaces
are dependent. It can be proven that each pair of control points, as shown in the
picture, needs to be collinear and equally spaced to ensure C1 continuity [53].

4.3.3 Multiple surfaces with simple boundary conditions

The modification of a set of Bezier surfaces is carried out in principally the same
way as the modification of a single surface. However, instead of solving Equation
(4.22) for each surface independently, all surface control-points and basis functions
are added to one large matrix equation. A similar principle was applied in [58].
Each control point is assigned a unique number k, k ∈ N and k ∈ [1, ktot]. ktot is
the total amount of parameters(and size of the K matrix). A point on one of the
surfaces in the geometry S can be calculated with the following vector equation:

S(u1, v1, u2, v2, ...) = nT ~p =







n1(u1, v1)
n2(u2, v2)

. . .

. . .







T 





~p1

~p2

. . .

. . .







(4.31)
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In this function, n1(u1, v1) represents the basis functions of the first surface. ~p1 is a
vector with the control points of this surface. It is now possible to imply boundary
conditions between the control points of different surfaces. It has been shown in the
previous section that two surfaces are connected C0 continuously when the control
points on the shared edge of the surfaces are identical. With a Lagrange multiplier
or the penalty method, an optimal set of surface parameters (for all surfaces) can be
calculated while maintaining the boundary condition that the shared control points
have the same location.

To the author’s knowledge, permanent continuity boundary conditions are not avail-
able in (free-form) surface modeling software such as ICEM-Surf and CATIA. The
reason for this is that during modeling, large shape modifications are carried out,
and each added boundary condition makes the surface model harder to handle:

• The geometry’s reaction to changes of control points may become counter-
intuitive.

• The system of equations that holds the boundary conditions may even become
unsolvable for large modifications.

The first problem is not really important for the compensation method: User inter-
action is not required, the control point locations are calculated by the algorithm.
The modifications that are carried out during compensation are generally small and
smooth, however, to ensure that a solution will always be found, the approximative
penalty method is used to avoid the second problem.

In the following part, the penalty method is applied in the context of the surface
refitting problem. When one boundary condition is applied, the α-th control point
(in the system’s vector of control points) has the same location as the β-th control
point, the following system must be solved (note that the prime from Equation
(4.22) is omitted in the formulas for convenience):

{

K~p = ~f
~pα = ~pβ

(4.32)

The following analysis is a variation on the calculation in [33], pages 194-197. The
reader is referred to this book for a more extensive explanation.

Firstly, the boundary condition is written in vector-form

lT ~p = 0 (4.33)

In this example the l-vector looks like this:

l = [0, . . . , 0, lα = −1, 0, . . . , 0, lβ = 1, 0, . . . , 0]T (4.34)

Then a potential Π is defined:

Π(p) =
1

2
~pTK~p− ~pT~f +

k

2
(lT~p)2 (4.35)

The parameter k is the penalty constant, a scalar with a large value. The vector ~p
that minimizes this function is an approximate solution of the constrained problem
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Figure 4.6: Compensation of component #1

[33].

0 = dΠ
dp

0 = Kp− f + kllTu

(4.36)

with M = kllT and f̄ = F + kdl this can be written as:

(K + kM)~p = ~f (4.37)

The same analysis is also possible for a set of n boundary conditions. In this case l
becomes a ktot × n matrix.

The mathematics were implemented in a C++ program called SurfaceSDA. Com-
ponent #1, the VW suspension part shown in the previous chapter, was used to
test the algorithm. Three bi-quadratic surfaces from the part’s CAD file, shown in
Figure 4.6 are compensated with SurfaceSDA.

To check the accuracy of the surface compensation, the three surfaces were also
finely discretized into a mesh and compensated with the regular SDA algorithm.
When the mesh of the surface geometry becomes very fine, the exact solution of the
surface modification is approached, so this can be used as a reference compensation.
The distance between both geometries is visualized in Figure 4.7. The error for
the SurfaceSDA algorithm is not large, it is less than 5% of the maximum amount
of compensation (3mm). This small error is due to the fact that the quadratic by
quadratic surfaces were not able to accurately ‘follow’ the compensation function.
The solution for this is to elevate the polynomial degrees of the surfaces [53], or to
use the piecewise polynomial (B-spline) surfaces to increase surface flexibility.

In Figure 4.8 the effect of constraints on the control points can be seen. As an ex-
periment, the coordinates of one control point were changed in the original part #1
surfaces, so the smooth transition was lost (a). Then, a boundary condition was set
between that control point and the corresponding control point on the next surface,
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Figure 4.7: Distance between the compensated set of surfaces and a mesh of the
surfaces (mm)

and the surfaces were compensated (b). As can be seen in the second picture, the
surfaces are now coincident again at this point. However, because no boundary con-
ditions were set for the other control points at the boundary, a gap appears. In (c)
the middle control point was also constrained, delivering a smaller gap, and finally
all three (d). Then, the transition is C0 over the entire boundary again.

By repairing initial surface continuity errors, the compensation method actually
improves the surface continuity instead of harming it, which is the case when the
compensation function would simply be applied to the control points. However, since
C1 continuity was not constrained in the example, it is not maintained and a kink
appears in the surface. Higher-order constraints will be treated in detail in the next
sections. Even for more complex boundary conditions, the surface compensation
strategy can handle minor defects in the initial geometry and resolve them.

4.3.4 Trimmed surfaces

NURBS surfaces are principally four-sided. In some cases it is inconvenient or
impossible to model a geometry with these surfaces. Such a geometry is visualized
in Figure 4.9. The flat bottom of the cup is created as a four sided surface first, and
then the unwanted parts are trimmed off to make the surface fit to the sidewalls.
The four sided surface is known as the basis patch P . The trim curve T is a Bezier
or B-spline curve, a function of parameter w and a set of control points ~pT in the
(u, v) space of P :

T (w) = nT (w)~pT (4.38)

Therefore, T (w) lies on the surface P by definition. A point ti at location wi on the
trim-curve can be calculated by inserting T in P .

~ti = P (T (wi)) = nT (T (wi))~pt (4.39)
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Figure 4.8: Surface continuity with different boundary conditions

Creating a trimmed surface is straightforward. Suppose that the trimmed surface
is generated from the wall surfaces in the geometry shown in Figure 4.9. The in-
tersection curve between the wall surface and the basis patch is calculated. This
curve can be used directly as the trim curve for the trimmed surface. Note that
finding the surface-surface intersection curve is a job in itself [17] and in most cases
an approximate solution is used.

Trimmed surfaces commonly occur in surface models that were converted from a
feature-based model. It is problematic to include these surfaces in the surface com-
pensation algorithm, since the control point rules do not apply to hold boundary
conditions between such a surface and another (trimmed or regular) surface. C0

continuity is already generally hard to impose, and according to [22](p. 244) it is
impossible to exactly impose C1 boundary conditions. Another common boundary
condition problem is when the transition between two surfaces does not include the
entire surface edge. Finally, the control point rules become complex for higher-order
continuity requirements. In the following section a general, more abstract, way of
imposing boundary conditions will be discussed to cater for these situations.

4.3.5 General continuity boundary conditions

In Figure 4.10 a set of surfaces is shown. Surfaces P,Q,R and S are ‘regular’ four-
sided Bezier or B-spline surfaces, surface T is a trimmed surface on the basis patch
B.

Three types of surface-surface transitions are identified:

• Type-a The transition p4 between regular (i.e. not trimmed) surfaces P and
R is a regular transition. The two surfaces share an entire edge, for which one
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Figure 4.9: A trimmed surface

Figure 4.10: A set of surfaces and their boundary conditions
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Figure 4.11: A type-a transition in component #2

parameter has a fixed value (in the example up = 0 and vr = 0).

• Type-b The transition s1 between the surfaces Q and S uses the surface
boundaries only partially.

• Type-c The transition t2 uses the edge of the regular surface R partially, and
a part of the trimcurve of surface T . This trimcurve has no fixed u or v pa-
rameters.

In Figures 4.11, 4.12 and 4.13, the different transitions are shown on component #2,
the trunk-lid inner panel.

In the general case, two surfaces K and L with control point vectors ~pK and ~pL coin-
cide on a border curve, either on the inside of the surface, like in a trimmed surface,
or on (a part of) the surface border. This curve has a definition in the parameter
space of both surfaces. Therefore, the boundary curves are defined separately as
γK(w) and γL(w), however, they are identical in cartesian space. Additionally the
parameter w, along the curves, must map to points on each curve that also coincide
in cartesian space.

A general boundary condition formula can be defined as follows: A Cgh-continuous
connection between the surfaces R and S is achieved when the following equation is
satisfied for the entire range of w:

n
(g)(h)T
K (γK(w))~pK = n

(g)(h)T
L (γL(w))~pL ∀ w (4.40)
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Figure 4.12: A type-b transition in component #2

Figure 4.13: A type-c transition in component #2
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The expression n(g)(h) is a vector with the g-th derivative with respect to the u-
parameter and the h-th derivative with respect to the v-parameter of the surface
basis functions. In the following section, such a boundary condition is implemented
in the surface compensation strategy.

Implementation of general boundary conditions in the framework
The boundary condition is added in the following steps

1. Identify boundary curves γ in the (u,v) space of both surfaces.

2. Establish a w−mapping between the two boundary curves.

3. Calculate and add the penalty condition to the main equation.

Identifying boundary curves
The compensation algorithm reads a set of surfaces, which initially need to be ap-
proximately C-0 connected. Even though it would be possible to automatically
detect the type of transition and the degree of continuity between each pair of
neighboring surfaces, at the moment this is required as user input.

In the following sections, the transition between two surfaces only is regarded. There-
fore, two curves in the (u,v) space of each surface are required. The transition
between surface P and R in Figure 4.10 is a type-a transition and the two curves are

γP (w) =

[
0
vP

]

(4.41)

γR(w) =

[
uR

0

]

(4.42)

Mapping boundary curves
Mapping the boundary curves means that both curves are written as a function of
the parameter w in such a way that for each w ∈ [0, 1] both curves point to the same
coordinate in cartesian space. In the example, the first curve is defined as:

γP (w) =

[
0
w

]

(4.43)

The second curve is also defined as a linear function with unknown a and b

γR(w) =

[
aw + b
0

]

(4.44)

These parameters can be found by solving

nT
P (γP (w)) ~pP = nT

R(γR(w)) ~pR ∀ w (4.45)

Suppose P and R have the same degree in u-direction. Then the solution is simple,
namely a = −1 and b = 1 in this case.

In general, the solution to Equation (4.45) is not trivial and a closed form solution
cannot be found. A generally applicable mapping solution will now be presented
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and demonstrated for the type-c transition between surface T and R. The boundary
curves for a trimmed parametric surface are generally defined as a parametric curve
in (u, v) space. The following equation shows a Bezier boundary curve on surface
T . Note that each control-point in the vector pT is given in (uT , vT ) parameters.

γT (w) = n(w)~pT (4.46)

Again, the goal is to reparameterize one of the curves so that Equation (4.45) is
satisfied. In other words: the parameter w needs to map to the same point in
(x, y, z)-space on both boundary curves. It is arbitrary which curve is reparame-
terized, in this case γR will be taken, and its parameter w will be replaced with
function s(w):

ST (γT (w)) = SR(γR(s(w))) ∀ w (4.47)

s(w) is a scalar function that can be chosen freely, but it has to be monotonically
increasing [53], p.241:

ds(w)

dw
> 0 (4.48)

In SurfaceSDA s(w) is found in the following way:

1. define a set of n sampling points for w, for example
wd = 0, 0.1, 0.2, 0.37, 0.52....1 0 < d < n

2. calculate the spatial coordinates for each of the sampling points on the γT edge
curve, T (γT (wd))

3. find the same location on the R-edge curve. This means: find sd numerically
from the calculation

min
sd
‖γR(sd)− T (γT (wd))‖

4. the data points wd, sd form a relationship between the parameter of the edge
curve T and the edge curve R. Fit or interpolate a function s(w) through the
(wd, sd) point set, that satisfies (4.48).

The process is visualized in Figure 4.14. In the C++ implementation a ‘Golden
Section’ algorithm [56] is used in step 3. In step 4, the data points are simply used
as a piecewise linear function. For the simple test cases this has turned out to be
accurate enough. Note that in the piecewise function s(w) still satisfies Equation
(4.48).

Adding the boundary condition
With global control point numbering, as proposed in section 4.3.3, Equation (4.33)
can be written for the entire system of surfaces as:

LR(w)~p = LS(w)~p⇔ LT (w)~p = 0 (4.49)
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Figure 4.14: Discrete reparametrization

L(w) =
















0
...

n
(g)(h)
R (γR(s(w)))

...

−n
(g)(h)
T (γT (w))

...
0
















(4.50)

with LT (w) = LR(w)−LS(w). With the following integral, a matrix M is calculated
so that the boundary condition is imposed on the entire edge-curve with penalty
factor k:

M = k

∫ 1

0
L(w)LT (w)dw (4.51)

The integral for the matrix M (Equation (4.51)) is concocted component-wise. It
can generally not be calculated in closed form, so numerical integration has to be
carried out. In the compensation strategy, a simple trapezoidal integration scheme
from [56] was used.

In general more than one surface-to-surface transition needs to be taken into account.
To achieve this the different boundary condition matrices can simply be added:

Mtotal = M1 + M2 + . . . (4.52)

This matrix Mtotal is applied in the main system of equations, defined in Equation
(4.37).

4.3.6 Results

The following list summarizes the surface compensation strategy that has been de-
veloped:

• The parametric surfaces that make up a geometry are represented by vector
equations

• On the surfaces, a grid of sampling points is defined. These sampling points
are compensated by the springback compensation function
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Figure 4.15: Modifying a set of four surfaces

• A system of equations is generated to re-fit the surfaces to the compensated
sampling points

• Regular boundary conditions between surface control points are added to the
system by using the penalty method

• General boundary conditions are added to the system, using boundary curve
mapping, integration and the penalty method

The algorithm has been tested on various academic problems. In Figure 4.15 four
cubic Bezier surfaces have been modified with various boundary conditions. As
pointed out earlier, in real CAD geometries the transitions between various surfaces
are generally not 100% accurate. Therefore, some kinks and gaps were included in
the geometry, shown in Figure (a). A heavy compensation function was applied to
the set of surfaces. When the surfaces are changed without boundary conditions, it
can clearly be seen that the geometrical errors become larger (b).

When C0 boundary conditions were included (c), the gaps disappeared after com-
pensation. Note that the shape of the modified geometry is still very close to the
unconstrained modified geometry (b). Finally, C1 boundary conditions were also
implied between the surfaces. It is clear that the boundary conditions are only
satisfied approximately and the resulting geometry (d) deviates considerably from
the unconstrained geometry. In this particular case, the effect is very large as the
shape modification is very drastic and because the cubic Bezier surfaces have a very
small number of control points, which limits the geometrical flexibility of the surface.
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Figure 4.16: Modifying with a type-b transition

In any case, this example strongly demonstrates the advantage of using the penalty
method. The boundary conditions are so severe that the geometry would be ‘locked’:
It would be impossible to find a solution to the compensation problem. Here, the
modified geometry can still be calculated and the user can decide to improve the
results:

• by changing the penalty factor of each boundary condition

• by modifying the surface’s definition, adding more control-points or surface
sections

The surfaces become wavy in geometry (d), which is problematic for class A car
body panels. Additionally, extra boundary conditions could be added to reduce
this problem. It should be clear that in real cases, the surfaces have a much higher
number of DOFs and the shape modification is not so drastic, so these problems will
not be so severe for industrial geometries.

The boundary conditions are not imposed anymore with the control point rules,
mentioned in Section 4.3.2. A type-b transition is shown in Figure 4.16. As an
example problem, one of the surfaces of component #1 was shifted to create a
partial transition. Coincidentally, this introduced C0 and C1 errors in the initial
geometry. After compensation of the surfaces, this error was resolved.

4.4 Conclusion and future work

The third research hypothesis can be answered positively:
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Hypothesis 3
Mesh-based shape modifications can automatically be transferred back to the tool
CAD geometry.

In this chapter a framework has been developed for modifying tool surfaces while
retaining the surface quality. Simply modifying the surface control points leads to
bad results, therefore the surface was modified by refitting: A set of sampling points
is defined on the original geometry. The points were then compensated and the
surfaces were fitted back to these points while maintaining their continuity bound-
ary conditions. When the penalty-factors were set correctly and the surfaces are
sufficiently flexible, an accurate compensation was achieved for various academic
examples, as shown in the previous section.

As pointed out, CAD geometries are never a perfect rendition of the geometry. While
delivering a successful compensation, the surface compensation algorithm was able
to cope even with large initial errors and improve on the surface quality instead of
decreasing it.

However, to be able to affirm the hypothesis, the framework must be verified in more
detail. The following issues can be considered for future research:

• Defining correct penalty-factors in relationship with the desired tolerances.

• Type-c transitions between trimmed surfaces need to be tested extensively and
documented with numerical results.

• The method must also be integrated in a (commercial) CAD program. CAD
software evolves at a very high speed, a high-performance database structure
and visualization module are essential for successful application.
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Glossary

γ boundary condition
Π potential
Ψ compensation function
A surface area
Bi,n Bernstein function
~ci tool node coordinates
d vector of sampling points
D matrix of sampling points
f fitting RHS
k penalty factor
K fitting matrix
l boundary condition vector
L set of boundary conditions (matrix)
M boundary condition matrix
n vector of basis functions
N basis function
~p control point vector
~P control point matrix
s(w) mapping function
S surface function
u surface parameter
v surface parameter
w (trim)curve parameter
~x cartesian coordinate
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Conclusion and

recommendations

In this thesis, methods for virtual tool reworking have been explored. Whereas
Finite Element simulations are already applied in industry for process design and
feasibility checks, the focus of this research project was to use these simulations
proactively in order to reduce the amount of tool reworking in the press workshop,
or to avoid it altogether. This is a desirable or even necessary improvement, since
in the car industry, product development time has to be reduced in order to remain
competitive.

Three tool-reworking bottlenecks have been identified that are particularly time-
consuming and costly:

• 1. Tool touching-in in order to adjust the blank-flow into the tool cavity.

• 2. Tool compensation for press and tool deflection.

• 3. Tool compensation for springback.

Tool and press deformations
For the first two items it was necessary to make an assessment of the magnitude
of press and tool deformations and their influence on the forming process. The
first research hypothesis, The deflection of the press and forming tools influences
the quality of the deep-drawn product, was confirmed: Even the smallest tool-surface
deformations strongly influence the contact pressure distribution on the blank and
consequently the blank draw-in. Also, global shape deviations occur due to deforma-
tion of the forming tools and the press components, particularly when large panels
are produced or when high-strength steels are used.

In the case of the so-called cross-die process, a deep drawing process that is used
as a material test, publications have shown that the problems related to tool and
press deformations are severe. In this thesis, an experimental setup was transferred
to a Finite Elements simulation. In contrast to regular forming simulations, the
tools were modeled as deformable bodies. Analysis of the results showed the same
phenomena that were reported by the experimenters and revealed that taking press
and tool deformations into account during the forming simulation is no luxury: Due
to the deformable tool models the blank draw-in changed significantly, leading to
considerable changes in the product’s quality measures such as rupture risk and
wrinkling.
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In this particular process, the tools were relatively simple structures which could
be discretized efficiently. Still, the numerical cost of the calculation was immense.
This means that simulations for industrial-scale forming processes are not feasible.
Regular techniques to reduce the size of the FE system of equations, such as static
condensation, did not improve the efficiency of the simulation. In contrast, De-
formable Rigid Bodies (DRBs) do provide a way to calculate the deformation of
tools approximately. Contrary to previously published methods, the DRB approach
was based on the static equilibrium equations in this thesis. The method has been
improved to reduce the error caused by the discretization of the tools, and a method
has been developed to assess the approximation error during the simulation. A
DRB module was included in forming simulation software DiekA and it was tested
successfully for the cross-die process. Comparing the results with the regular FE
model, the change in the contact pressure distribution was captured correctly, yet
the numerical cost only increased by 8%. Therefore, hypothesis 1b, Press and tool
elasticity can be included in the forming simulation at acceptable cost, is confirmed.

Tool compensation algorithms
Accurate FE simulations, like the previously mentioned analysis, but also the strongly
improved springback prediction calculations, make it possible to perform simulation-
based tool compensation. In this thesis an algorithm called Smooth Displacement
Adjustment (SDA) has been successfully developed, confirming hypothesis 2, Using
FE simulation results, the surface of the forming tools can be compensated automat-
ically for springback and tool deflection to produce a geometrically accurate product.
The SDA algorithm uses FE simulation results to reduce the product’s shape devi-
ation in an iterative procedure. The main conclusions are:

• The product’s shape deviation can be reduced over 80% in a small number of
compensation iterations, as demonstrated for several industrial cases.

• The tool quality is maintained, including the blankholder surface, the gap-
width between tools and undercuts are avoided.

• The algorithm does not require human interaction and is robust.

Contrary to the iterative variant, one-step SDA still requires trial and error and it
generally leads to less accurate results. However, sometimes it is the only available
option, for example when experimental measurements are used instead of simula-
tion results. An extensive study on a stretch-bending process has shown how the
compensation can be set up to provide the best results, taking into account different
process, geometrical and material parameters. This study also revealed principal
flaws in an alternative compensation strategy, called Spring-Forward.

Compensation of CAD geometries
In today’s computer aided product development systems, design and simulation
are two different worlds. Discretizing CAD geometries into FE meshes is a well-
developed area, however, transferring results from FE-based algorithms back into a
CAD model remains problematic.

• ‘Reworking’ tool geometries in a CAD context is also a process planning bot-
tleneck and algorithmic solutions are required.
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In the case of tool compensation, the modifications are generally subtle, but very
stringent geometrical tolerances must be kept in order to preserve the appearance of
the body panel after painting. In this thesis an algorithm has been developed that
takes the smoothness constraints on surfaces into account. While applying the com-
pensation to the geometry, it is able to maintain the surface quality and to actually
repair geometrical defects in the initial CAD description. This was demonstrated on
various academic geometries. This validates the last research hypothesis, Mesh-based
shape modifications can be automatically transferred back to the tool CAD geometry.

Recommendations

In all three fields of research, algorithmic tools have been developed that can replace,
or in any case assist, existing manual procedures. The feasibility and potential of
the methods has been proven clearly in this thesis, however the true use will only
become clear when the methods are used in industry on a daily basis. To achieve
this, the following list of recommendations is given for each algorithmic tool:

Deformable Rigid Bodies

• A full-scale process needs to be modeled using the DRB approach. Only with
an industrially realistic simulation, the advantage in efficiency can be proved
fully.

• As tool and press deformations cannot be treated separately, the entire press
structure needs to be taken into account. This is possible with the DRB
approach due to the high efficiency, although modeling the press will require
careful analysis.

• The interaction of DRBs under contact needs to be explored in more detail.

• It is highly recommended to apply DRB modeling in the context of flexible
blankholder technology. Here, the method is essential in modeling the process
correctly, and the results can be verified more easily, both in the case of an FE
simulation and in experiments.

The SDA compensation algorithm

• Springback compensation was applied to single-stage deep drawing processes
only. It needs to be investigated how compensation is most effective when the
production process consists of many different stages

• The use of compensation in the case of global tool deformation needs to be
demonstrated in an industrial context

Modification of CAD geometries

• The method needs to be integrated in a (commercial) CAD software-framework.
Only then, the potential of the method can be shown for realistic tool geome-
tries

• In this thesis, the feasibility of CAD-geometry compensation was demon-
strated. Practical use requires a more careful study of the numerical parame-
ters, used in the algorithm
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Final remark

Let us return to the step-wise integration of CAD systems and FE simulations, as
introduced in Figure 1.1: Broadening and improving this integration is the way for-
ward for the quick development of new products. The tools and algorithms that
have been developed in this thesis strongly support this integration. However, this
will only be a successful approach, when a forming process is carefully analyzed and
regarded as part of a larger chain of consecutive production processes, not just as a
single operation. More importantly, even for the most complex of algorithms, human
ingenuity, flexibility and experience must remain involved. Computer modeling, vir-
tual testing and numerical optimization cannot replace these human characteristics.
They, however, are a help in saving time and money in production planning.
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[63] S. Schöne. Einsatz vom reverse engineering am melkus rs1000 - rs2000
˙http://tu-dresden.de, 2007.

122



[64] T. Sederberg. Chapter 2 - bezier curves ˙
http://www.tsplines.com/resources/class notes/Bezier curves.pdf, 2007.

[65] T. Sederberg and S. Perry. Freeform deformation of solid geometric models.
Computer Graphics, 20:151–160, 1986.

[66] W. Song and X. Yang. Free-form deformation with weighted t-spline.
http://www.cad.zju.edu.cn/home/yinxuehui/swh/research/2004/TFFD/TFFD.htm,
2004.

[67] T. Tan. Informationsintegration in der virtuellen produktentstehung - vom
virtuellen fahrzeug zur digitalen fabrik. In proceedings Produktionstechnisches
Kolloquium, pages 93–97, Berlin, 2004.

[68] Z. Tekiner. An experimental study on the examination of springback of sheet
metals with several thicknesses and properties in bending dies. Journal of
Materials Processing Technology.

[69] A.H. Boogaard van den, H.H. Wisselink, and J. Huétink. Do advanced materi-
als contribute to accuracy in industrial sheet forming simulations? In M. Geiger
et al., editor, She Met conference proceedings, pages 71–80, Erlangen - Nurem-
berg, 2005.

[70] R. Wagoner. Fundamental aspects of springback in sheet metal forming. In
D. Yang et al., editor, proceedings NUMISHEET, pages 13–19, 2002.

[71] R. Wagoner. Design of sheet forming dies for springback compensation. In
V. Brucato, editor, proceedings ESAFORM, pages 7–14, 2003.

[72] R.H. Wagoner and J.L. Chenot. Metal Forming Analysis. Cambridge University
Press, 2001.

[73] R.H. Wagoner and M. Li. Advances in springback. In L. Smith et al., editor,
Proceedings NUMISHEET, pages 209–214, 2005.

[74] R.H. Wagoner and M. Li. Simulation of springback: Through thickness inte-
gration. International Journal of Plasticity, 2006.

[75] R.H. Wagoner, J.F. Wang, and M. Li. Springback. ASM Metals Handbook on
Forming and Forging (vol.14), ASM, 2006.

[76] X.J. Wang, D. Tang, X.A. Tang, and J. Liu. Development of a new universal
friction test for sheet forming. In J.K. Lee, G.L Kinzel, and R.H. Wagoner,
editors, proceedings NUMISHEET, pages 55–59, 1996.

[77] M.L. Wenner. Overview - simulation of sheet metal forming. In L. Smith et al.,
editor, Proceedings NUMISHEET, pages 3–7, 2005.
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